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Robust Design Optimization in
Computational Mechanics
The motivation of this paper is to propose a methodology for analyzing the robust design
optimization problem of complex dynamical systems excited by deterministic loads but
taking into account model uncertainties and data uncertainties with an adapted nonpara-
metric probabilistic approach, whereas only data uncertainties are generally considered
in the literature by using a parametric probabilistic approach. The possible designs are
represented by a numerical finite element model whose design parameters are determin-
istic and belong to an admissible set. The optimization problem is formulated for the
stochastic system as the minimization of a cost function associated with the random
response of the stochastic system including the variability of the stochastic system in-
duced by uncertainties and the bias corresponding to the distance of the mean random
response to a given target. The gradient and the Hessian of the cost function with respect
to the design parameters are explicitly calculated. The complete theory and a numerical
application are presented. �DOI: 10.1115/1.2775493�

Keywords: robust design, model uncertainties, structural dynamics

1 Introduction
It is known that the accuracy of the dynamical responses pre-

dictions in computational mechanics is mainly related to the level
of model and data uncertainties. For this reason, probabilistic
models of random uncertainties are implemented in the numerical
simulation models in order to improve the predictions in compu-
tational dynamics. In this probabilistic context, it is necessary to
distinguish the mean dynamical system corresponding to a nomi-
nal mechanical model from the stochastic dynamical system cor-
responding to a more realistic model of the real dynamical system
manufactured from the design. These past decades, design optimi-
zation has become a major challenge in the industrial technologies
such as aerospace, aeronautics, automotive, and nuclear indus-
tries. In the early works, the design optimization problem was
studied from a deterministic point of view, neglecting the presence
of uncertainties in the numerical model used for the optimization
problem. In this case, the deterministic design optimization prob-
lem yields an optimal design whose responses satisfy for the best
given target �performance objective�, see, for instance, Ref. �1�.
This optimal design can then be used in order to construct the
stochastic dynamical system for analyzing a posteriori the effects
of uncertainties on the dynamical response.

It should be noted that data uncertainties can clearly be taken
into account by the parametric probabilistic approach whose sto-
chastic finite element methods �see, for instance, Refs. �2–5�� and
other theoretical and numerical methods �see, for instance, Refs.
�6,7�� constitute very efficient tools in computational mechanics.
Nevertheless, such a parametric probabilistic approach does not
allow model uncertainties to be taken into account �8�. More re-
cently, a nonparametric probabilistic approach �9–11� has been
proposed to take into account model uncertainties.

These past decades, various researches have been carried out in
order to include the effects of uncertainties in the design optimi-
zation problem �12� called the robust design. In the context of
mechanical engineering, the robust design leads to solve a nonlin-
ear constrained optimization problem with numerical models,
which are little sensitive to uncertainties in the vicinity of the

design point �see, for instance, Refs. �13,14� for the early works
and Refs. �15–20� for the most recent advances concerning this
research area�. The main difficulty of such robust design optimi-
zation problems concerns the probabilistic model of uncertainties.
It should be noted that the relevance of the probabilistic model
used is an important factor for the robust design optimization
problem. The use of an erroneous probabilistic model yields an
erroneous optimal design. However, there is no reason for that the
responses of the real dynamical system, which is manufactured
from this erroneous optimal design, correspond to the perfor-
mance objective. Until now, most of the published papers con-
cerning robust design have been carried out in the context of static
performances using parametric probabilistic models for modeling
data uncertainties in the mechanical system. The robust design in
the dynamic field is relatively recent �18,19�. It should be noted
that the dynamical systems can be very sensitive to model uncer-
tainties and not only sensitive to data uncertainties. Moreover, this
sensitivity generally increases with the complexity of the dynami-
cal system. In any case, all the works published until now concern
robust design with respect to data uncertainties and not with re-
spect to model uncertainties.

The motivation of this paper is to propose a methodology for
analyzing the robust design optimization problem of complex dy-
namical systems excited by deterministic loads but taking into
account model uncertainties and data uncertainties with the non-
parametric probabilistic approach introduced above, whereas only
data uncertainties are generally considered in the literature by us-
ing a parametric probabilistic approach. Several experimental
validations �21–24� and numerical validations �11,25–27� have
proved the capability of the nonparametric probabilistic approach
to take into account model uncertainties and data uncertainties. A
complete theory concerning the robust design optimization prob-
lem of complex dynamical systems excited by deterministic loads
is presented in this paper. The nonparametric probabilistic model
is used for modeling nonhomogeneous model and data uncertain-
ties. The mean reduced matrix model of the design is constructed
by using substructuring techniques �see, for instance, Refs.
�28–34��. The design parameters are deterministic and belong to
an admissible set. The cost function used to formulate the robust
design optimization problem is then defined as a function of the
design parameter. Concerning the formulation of the cost function,
the performance objective includes not only the target but also the
robustness with respect to model uncertainties and data uncertain-

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received January 12, 2006; final manu-
script received July 2, 2007; published online February 20, 2008. Review conducted
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ties. More precisely, the cost function is defined as a linear com-
bination of the normalized variance of the stochastic system re-
lated to the variability of the system induced by uncertainties and
of the bias corresponding to the distance between the mean ran-
dom response of the stochastic system and a given target. The
norm and the distance used are related to the square integrable
norm over a given frequency band of analysis. The gradient and
the Hessian of the cost function with respect to the design param-
eter are algebraically calculated that is useful for improving the
performance of the optimization algorithm.

In Sec. 2, the set of mean reduced matrix models related to the
set of all the feasible designs is constructed by using the Benfield
and Hruda substructuring technique �30�. In Sec. 3, the design
optimization problem is formulated assuming no uncertainties in
the model of the dynamical system. Section 4 is devoted to the
implementation of the nonparametric probabilistic approach for
model and data uncertainties. Section 5 concerns the construction
of the cost function describing the target and the sensitivity of the
dynamical system to uncertainties �performance objectives� in or-
der to formulate the robust design optimization problem with re-
spect to model and data uncertainties. Finally, a numerical appli-
cation is presented in Sec. 6.

2 Mean Dynamical System
The dynamical system is made up of a given master system �a

structure� coupled with a subsystem �a substructure�, which has to
be designed. The dynamical system is assumed to be linear and
slightly damped. The equations are discretized by the finite ele-
ment method and are written in the frequency domain. The fre-
quency band of analysis is denoted by B. It is assumed that the
master system has no rigid body displacements and that the sub-
system is free with r rigid body modes. Let p= �p1 , . . . , ps� be the
Cs vector of the design parameters �geometry, elasticity properties,
boundary conditions, etc.�. The vector of the design parameters
belongs to an admissible set P defined by the set of constraints
prescribed by the design. For p fixed in P and for � fixed in B, the
equation of the mean dynamical system is written as

��A1���� + �A2�p,����u�p,�� = f�p,�� �1�

in which u� �p ,�� is the Cn vector of the n DOF and f�p ,�� is the
Cn vector induced by the external forces. In Eq. �1�, the symmetric
n�n complex matrices �A� 1���� and �A� 2�p ,��� are the dynamical
stiffness matrices of the master system and of the subsystem. It is
assumed that vector f�p ,�� and matrix �A� 2�p ,��� are affine map-
pings of the design parameter p= �p1 , . . . , ps� and are written as

f�p,�� = f0��� + �
i=1

s

pif
i��� �2�

�A2�p,��� = �A2,0���� + �
i=1

s

pi�A2,i���� �3�

Note that such an assumption allows a large class of design prob-
lems to be studied. For instance, let us consider an Euler beam
with rectangular section S=bh and bending inertia I=bh3 /12
=Sh2 /12. It is assumed that S has a fixed value and that the opti-
mization variables are the mass density per unit length � and the
section height h. Then the design parameter can be chosen as p
= �p1 , p2� with p1=� and p2=h2, which satisfies the linear assump-
tion. Such a linear assumption is useful for optimization algorithm
because the gradient of vector f�p ,�� and the gradient of matrix
�A� 2�p ,��� are calculated once and do not depend on p. In addi-
tion, the Hessian of f�p ,�� and �A� 2�p ,��� are zero. It should be
noted that the theory presented in this paper is also valuable when
this linear assumption is removed, but then requires the numerical
calculation of the gradient and the Hessian of f�p ,�� and
�A� 2�p ,��� for each p in P. Let n1 and n2 be the number of the

internal DOF of the master system and the subsystem. Let n� be
the number of coupling interface DOF. We then have n=n1+n�

+n2. The bloc decomposition of u� �p ,��, f�p ,��, �A� 1����, and
�A� 2�p ,��� with respect to n1, n�, and n2 is given by

u�p,�� = �u1�p,��
u��p,��
u2�p,��

	 f�p,�� = � f1�p,��
f��p,��
f2�p,��

	 �4�

�A1���� = � �Aii
1���� �Ai�

1 ���� �0�

�Ai�
1 ����T �A��

1 ���� �0�
�0� �0� �0�

	
�A2�p,��� = ��0� �0� �0�

�0� �A��
2 �p,��� �Ai�

2 �p,���T

�0� �Ai�
2 �p,��� �Aii

2�p,���
	 �5�

In this paper, the Benfield and Hruda dynamic substructuring
method �30� is used and is briefly summarized below �note that
any other substructuring method could be used �see, for instance,
Refs. �28,29,31–34���. First, the Craig and Bampton method �28�
is applied to the master system with N1 elastic modes �with fixed
coupling interface� stored in the n1�N1 real matrix ��� 1�. The
static boundary functions related to this coupling interface are
stored in the n1�n� real matrix �S�1�. Second, the mean reduced
matrices of the master system are assembled with the mean finite
element matrices of the subsystem. Third, the submatrix of the
coupled system �master system with subsystem� corresponding to
the DOF of the subsystem is extracted. The eigenmodes of this
submatrix corresponding to the N2 lowest eigenfrequencies are
stored in the real �n�+n2��N2 matrix ��� 2�p��. In the robust de-
sign optimization context, the probabilistic model of uncertainties
must be independent of the value of the design parameter p. This
implies that the projection basis for the subsystem must be inde-
pendent of p. Consequently, a numerical value p0 of p is chosen
as an initial design value. Let VN2

be the subspace of Rn�+n2

spanned by the N2 columns of ��� 2�p0��. The value of N2 must be
chosen such that �u� ��p ,�� ,u� 2�p ,��� belongs to VN2

for all p in P
for a given tolerance of this approximation. It should be noted that
N2 cannot be selected a priori but has to be defined during the
computation studying the convergence with respect to N2. Clearly,
VN2

converges to Rn�+n2 when N2 goes to n2+n�, for all p in P.
Nevertheless, the reduction will be efficient if N2�n2+n�. It will
be the case if the set P of the possible designs is not too “big” and
for n2+n� very large. If n2+n� is small �for instance, a few doz-
ens of degrees of freedom�, we will have N2
n2+n� but it is not
a difficulty. If n2+n� is large �for instance, several thousands or
ten thousands of degrees of freedom� and if the convergence is not
obtained for N2�n2+n�, this means that the projection basis has
to be constructed for each p in P. For such a case, all the devel-
opments presented in this paper can be used except the explicit
calculation of the gradient and the Hessian of the cost function,
which then have to be numerically calculated �if used in the opti-
mization algorithm�. Finally, the projection basis corresponding to
the Benfield and Hruda dynamic substructuring method is then
written as

�u1�p,��
u��p,��
u2�p,��

	 = �H�p0���q1�p,��

q2�p,�� � �6�
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�H�p0�� = ���1� �S1����
2 �p0��

�0� ���
2 �p0��

�0� ��i
2�p0��

	
in which the matrices ��� �

2 �p0�� and ��� i
2�p0�� correspond to the

bloc decomposition of matrix ��� 2�p0�� with respect to the n�

coupling interface DOF and the n2 internal DOF of the subsystem.
Projecting Eq. �1� in using Eq. �6� yields the mean reduced matrix
equation

��Ared
1 ���� + �Ared

2 �p,�����q1�p,��

q2�p,�� � = fred�p,�� �7�

in which fred�p ,��= �H� �p0��Tf�p ,�� and where �A� red
1 ���� and

�A� red
2 �p ,��� are the symmetric N�N complex matrices in which

N=N1+N2 using the bloc decomposition with respect to the N1
and N2 reduced coordinates. Note that �A� red

1 ���� is a full matrix
and that �A� red

2 �p ,��� is written as

�Ared
2 �p,��� = ��0� �0�

�0� �As
2�p,��� � �8�

in which

�As
2�p,��� = ��0�T ��2�p0��T��A2�p,���� �0�

��2�p0�� � �9�

3 Formulation for the Design Optimization Problem
With a Numerical Model With No Uncertainties

In this section, we remind a formulation to solve the design
optimization problem assuming that there are no uncertainties.
This formulation will be used to compare the solution of this
deterministic design optimization problem with the robust design
optimization solution presented in Sec. 5. Let w� �p ,�� be the vec-
tor in Ck of the observations of the mean dynamical system, de-
fined as a function of the displacement vector u� �p ,�� such that

w� �p,�� = b��u� �p,��� �10�

where b� is a given function from Cn into Ck depending on the
frequency �. The performance objectives for the observations in
the frequency band B1�B will be defined as the “target.” This
target is then represented by the function ��g��� from B1 into
Ck. The cost function j��p� is formulated as a distance between the
target g and the observation w� �p , · �. It is a function of design
parameter p and is written as

j�p� =
w�p, · � − gB1

2

gB1

2 �11�

in which gB1

2 =�B1
g���2d� with g��� the Hermitian norm of

g���. The design optimization problem is formulated as the mini-
mization of the cost function j��p� with respect to the design pa-
rameter p in the admissible set P: find pD in P such that j��pD�
� j��p� for all p in P. Such an optimization problem can be solved
numerically by using the sequential quadratic optimization algo-
rithm �35,36�.

4 Stochastic Dynamical System With Model and Data
Uncertainties

As explained in the Introduction, the robust design optimization
problem is formulated with respect to the model uncertainties and
data uncertainties existing in the mean model of the dynamical
system. In this section, we then introduce this nonparametric
probabilistic approach of uncertainties �9–11�. It is assumed that
the mean model of the master system and subsystem contain
model uncertainties and data uncertainties. The level of uncertain-

ties of these two systems is a priori different and will be then
characterized by different values of the dispersion parameters de-
fined below.

Let �M� red
1 �, �D� red

1 �, �K� red
1 � and �M� s

2�p��, �D� s
2�p��, �K� s

2�p�� be the
mean reduced mass, and damping, stiffness matrices of the mean
master system and of the mean subsystem, respectively. The dy-
namic stiffness reduced matrices are such that �A� red

1 ����
=−�2�M� red

1 �+ i��D� red
1 �+ �K� red

1 � and �A� s
2�p ,���=−�2�M� s

2�p��
+ i��D� s

2�p��+ �K� s
2�p��. The matrices �M� red

1 �, �D� red
1 �, �K� red

1 � are posi-
tive symmetric N�N matrices whose rank is N1=N−n2 �which is
assumed to be positive�, whereas �M� s

2�p�� is a positive-definite
symmetric N2�N2 matrix and �D� s

2�p��, �K� s
2�p�� are positive sym-

metric N2�N2 matrices whose rank is N2−r. The methodology of
the nonparametric probabilistic approach consists in replacing the
matrices �M� red

1 �, �D� red
1 �, �K� red

1 � and �M� s
2�p��, �D� s

2�p��, �K� s
2�p�� by

the random matrices �Mred
1 �, �Dred

1 �, �Kred
1 � and �Ms

2�p��, �Ds
2�p��,

�Ks
2�p�� such that E��Mred

1 ��= �M� red
1 �, E��Dred

1 ��= �D� red
1 �, E��Kred

1 ��
= �K� red

1 � and E��Ms
2�p���= �M� s

2�p��, E��Ds
2�p���= �D� s

2�p��,
E��Ks

2�p���= �K� s
2�p�� in which E is the mathematical expectation.

The probability model for each one of these random matrices is
briefly recalled below. Let �E� i�p��, i= �1,2� be the positive sym-
metric n�n real matrix of rank m representing one of the matrices
of the set ��M� red

1 � , �D� red
1 � , �K� red

1 �� when i=1 or of the set
��M� s

2�p�� , �D� s
2�p�� , �K� s

2�p��� when i=2. Using the nonparametric
probabilistic approach, the matrix �E� i�p�� is replaced by the ran-
dom matrix �Ei�p�� such that

�Ei�p�� = �LE
i �p��T�GE

i ��LE
i �p�� �12�

in which �L� E
i �p�� is an m�n rectangular real matrix such that

�E� i�p��= �L� E
i �p��T�L� E

i �p�� and where �GE
i � is a random matrix with

value in the set of all the positive-definite symmetric m�m ma-
trices. The probability model of random matrix �GE

i � is con-
structed by using the maximum entropy principle with the avail-
able information. The dispersion of the random matrix �GE

i � is
controlled by one real positive parameter �E

i called the dispersion
parameter. This means that the dispersion parameters related to
random matrices �GM

1 �, �GD
1 �, �GK

1 � and �GM
2 �, �GD

2 �, �GK
2 � are �M

1 ,
�D

1 , �K
1 and �M

2 , �D
2 , �K

2 . It should be noted that as a result of this
theory, these six random matrices are independent random matri-
ces. All the details concerning the construction of this probability
model can be found in Refs. �9–11�. The algebraic representation
of random matrix �GE

i � adapted to the Monte Carlo numerical
simulation is briefly recalled. Random matrix �GE

i � is written as
�GE

i �= �LGE
i �T�LGE

i � in which �LGE
i � is an m�m real upper trian-

gular random matrix such that �1� random variables ��LGE
i � j j� , j

� j�� are independent; �2� for j	 j�, real-valued random variable
�LGE

i � j j� can be written as �LGE
i � j j�=
mUjj� in which 
m=�E

i �m
+1�−1/2 and where Ujj� is a real-valued Gaussian random variable
with zero mean and variance equal to 1; �3� for j= j�, positive-
valued random variable �LGE

i � j j can be written as �LGE
i � j j

=
m
�2Vj in which 
m is defined above and where Vj is a positive-

valued gamma random variable whose probability density func-
tion pVj

�v� with respect to dv is written as

pVj
�v�

= 1R+�v�
1

���m + 1�/�2��E
i �2� + �1 − j�/2�

v�m+1�/�2��E
i �2�−�1+j�/2e−v

�13�

In coherence with the notation of Sec. 2, let U�p ,�� be the
Cn-valued random vector of the displacement whose bloc decom-
position �similar to Eq. �4�� is written as U�p ,��
= �U1�p ,�� ,U��p ,�� ,U2�p ,���. Then the equations of the sto-
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chastic reduced system corresponding to the nonparametric proba-
bilistic model of uncertainties are

�U1�p,��
U��p,��
U2�p,��

	 = �H�p0���Q1�p,��
Q2�p,�� � �14�

where Q�p ,��= �Q1�p ,�� ,Q2�p ,��� is the CN-valued random
vector of the generalized coordinates, solution of the random ma-
trix equation that

��Ared
1 ���� + �Ared

2 �p,����Q�p,�� = fred�p,�� �15�

in which the matrix �Ared
1 ���� is such that �Ared

1 ����=−�2�Mred
1 �

+ i��Dred
1 �+ �Kred

1 � and where the matrix �Ared
2 �p ,��� is such that

�Ared
2 �p,��� = ��0� �0�

�0� �As
2�p,��� � �16�

with

�As
2�p,��� = − �2�Ms

2�p�� + i��Ds
2�p�� + �Ks

2�p�� �17�

5 Formulation of the Robust Design Optimization
Problem With Respect to Model Uncertainties and Data
Uncertainties

In this section, the robust design optimization problem is for-
mulated with respect to model uncertainties and data uncertainties
using the nonparametric probabilistic approach described in Sec.
4. The robust design optimization problem deals with the minimi-
zation of a cost function with respect to the design parameter. The
cost function is constructed with an uncertain numerical model.
Contrary to the design optimization problem described in Sec. 3,
the cost function is not defined for the performance of the mean
dynamical system but is defined with respect to the performance
of the stochastic dynamical system representing the real manufac-
tured system. For the robust problem, the performance objectives
are double: �1� minimizing the distance between the mean value
of the stochastic observation and the target and �2� minimizing the
sensitivity of the stochastic observation with respect to model un-
certainties and data uncertainties. The solution of this robust de-
sign optimization problem yields an optimal value of the design
parameter, which corresponds to an optimal dynamical system
from which the real manufactured system fulfills the performance
objectives.

In coherence with the notation introduced in Sec. 3, let W�p ,��
be the Ck-valued random variable modeling the random observa-
tion of the stochastic dynamical system. It is defined as a function
of the random displacement vector U�p ,�� such that

W�p,�� = b��U�p,��� �18�

in which b� is the function introduced in Eq. �10�. The cost func-
tion is then defined by

j�p,�� =
1

gB1

2 ����p, · � − gB1

2 + �1 − ��
2�p�� �19�

in which ��p ,�� is the mean value of random vector W�p ,��
such that ��p ,��=E�W�p ,��� and where 
2�p�=E�W�p , · �
−��p , · �B1

2 �. In Eq. �19�, the scalar � belonging to �0,1 /2� is the
weighting factor, which has to be adjusted in order to favorize the
robustness objective performance �2� with respect to the target
objective performance �1�. It should be noted that cost function
j�p ,�� can be rewritten as

j�p,�� = �j1�p� + �1 − 2��j2�p� �20�

in which j1�p�= gB1

−2E�W�p , · �−gB1

2 � and where j2�p�
= gB1

−2
2�p�. Note that j1�p� is related to a distance between the
stochastic observation and the target and allows the target perfor-

mance objective �1� and the robustness performance objective �2�
to be simultaneously achieved with equal weight. The quantity
j2�p� is a penalty term for favorizing the robustness performance
objective �2� when � decreases.

The robust design optimization problem is formulated as a mul-
tiobjective optimization problem, which consists to minimize the
cost function p� j�p ,�� with respect to the admissible set P of
the design parameter p. For given dispersion parameters �M

1 , �D
1 ,

�K
1 and �M

2 , �D
2 , �K

2 and for a given value of �� �0,1 /2�, the robust
design optimization problem is written as follows: find pRD in P
such that

j�pRD,�� � j�p,�� for all p in P �21�

The value of the weighting factor � characterizes the importance
of each performance objective with respect to the other one and is
adjusted in order to obtain the better solution. Since the paper
deals with robust design optimization, the case for which the tar-
get objective performance �1� would be favorized with respect to
the robust objective performance �2� is not considered. For this
reason, the weighting factor is chosen such that ��1 /2. When
�=1 /2, the weight of the performance objectives �1� and �2� are
the same. For small values of �, the performance objective related
to the robustness with respect to model and data uncertainties
becomes more important with respect to the performance objec-
tive related to the target. In the formulation of the cost function
j�p ,�� given by Eq. �19�, a target has been introduced. Then the
cost function given by Eq. �19� is different from most of the
formulations encountered in the literature �15,18,19�. In addition,
since the normalization does not change the optimization problem,
it should be noted that the formulation used is coherent with the
usual formulation of the robust design optimization problem
�18–20� when the target is not taken into account �g=0� and for
the monodimensional case �k=1�. Note that the definition of the
robust design optimization problem is coherent with respect to the
deterministic design optimization problem given in Sec. 3. Since
the value �=0 is excluded, the formulation for robust design op-
timization is coherent with the formulation of design optimization
when the stochastic dynamical system tends to be deterministic,
that is to say when lim��0pRD=pD in which �
= ��M

1 ,�D
1 ,�K

1 ,�M
2 ,�D

2 ,�K
2 �. Finally, the robust design optimization

problem is solved by using the sequential quadratic optimization
algorithm �35,36� coupled with the Monte Carlo numerical simu-
lation. In addition, it should be noted that the random germs of the
random matrices do not depend on the design parameter p. Con-
sequently, the gradient and the Hessian can algebraically be con-
structed �see the Appendix�, which improves the precision of the
optimization algorithm.

6 Numerical Application
The objective of this application is the robust design optimiza-

tion of dynamic absorbers in order to reduce the vibration level of
a heterogeneous dynamical system in a given narrow-frequency
band and for a given deterministic excitation. The heterogeneous
dynamical system is constituted of a homogeneous plate coupled
with lumped masses and oscillators. Only the vibration level of
the homogeneous plate has to be reduced. The dynamic absorbers
are identical and each one is constituted of oscillators in parallel at
different eigenfrequencies. Two cases are investigated. The first
case concerns robust design optimization with respect to a single
design parameter. A more complicated case involving a multidi-
mensional design parameter is then considered.

6.1 Mean Finite Element Model of the Dynamical System.
The dynamical system is constituted of a master system corre-
sponding to the heterogeneous dynamical system and of a sub-
system made up of the dynamic absorbers. The frequency band of
interest is �350,750� Hz but the frequency band of analysis for
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optimal design is �500,600� Hz. Consequently, the target will be
specified in this frequency band in order to optimize the absorbers
in this band.

The mean master system is the heterogeneous system made up
of a plate with two attached lumped masses, one attached spring
and 51 attached single DOF linear oscillators. The plate is a thin
plate in bending mode and is located in the plane �Ox ,Oy� of a
Cartesian coordinate system �Oxyz�. The out-of-plane displace-
ments are only considered. The plate is made of a homogeneous,
isotropic elastic material with mass density of 7800 kg m−3, Pois-
son ratio of 0.29, and Young modulus of 2�1011 N m−2. The
plate has constant thickness of 0.4�10−3 m, length of 0.5 m, and
width of 0.4 m. The plate is simply supported on three edges and
is free on the fourth edge corresponding to y=0. The mean finite
element model of the plate is constituted of 2000 bending plate
elements �with four nodes� and is shown in Fig. 1. A damping
model is added to the plate corresponding to a hysteretic model
with a mean loss factor of 0.02. The two lumped masses have
masses of 4 kg and 1 kg, located at points �0.15, 0.15, 0� and �0.2,
0, 0�, respectively �see Fig. 1�. The attached spring has stiffness of
2.388�1011 N m−1 and is located at point �0.06, 0.23, 0� �see Fig.
1�. The attached oscillators are grouped by sets of three oscillators
�see Fig. 1�. The eigenfrequencies of these oscillators are in the
band �350,750� Hz.

The mean subsystem to be optimized is constituted of nine
identical vibration absorbers, each one being made up of five
single DOF linear oscillators in parallel �see Fig. 1�. The eigen-
frequencies of the five oscillators are fixed, are equal to 560 Hz,
565 Hz, 570 Hz, 575 Hz, and 580 Hz, and have been chosen to
form an absorber around the main resonance occuring at 571 Hz
in the narrow-frequency band �500,600� Hz. Note that these val-
ues have been deduced from a sensitivity analysis performed with
the mean model in order to obtain a significant reduction of the
vibration levels. The critical damping rate is the same for the five
oscillators and is 0.01. In a first case, it is assumed that the five
oscillators of a vibration absorber have the same mass m, which
has to be optimized. The total mass of the subsystem is then
defined by m=45m. The design parameter is m. In a second case,
it is assumed that the mass of each oscillator constituting a vibra-
tion absorber can be different. Denoting as mi the mass of the
oscillator number i of each vibration absorber constituting the
subsystem, the design parameter is the R5-vector m in which m

= �9m1 ,9m2 ,9m3 ,9m4 ,9m5�. Since the eigenfrequency and the
critical damping of the oscillators of the vibration absorbers are
fixed, the mass, damping, and stiffness matrices of the subsystem
are affine functions of the design parameter m. In the present case,
the excitation does not depend on m.

The finite element model of the mean dynamical system �mas-
ter system coupled with the five vibration absorbers� is thus con-
stituted of n=6106 DOFs with n1=6052 internal DOFs of the
mean master system, n2=45 internal DOFs for the mean sub-
system and n�=9 coupling interface DOFs. The mean dynamical
system is submitted to a given deterministic unit transverse load
constant in frequency band �5,1200� Hz with amplitude 1 �see
Fig. 1�. The observation chosen for the dynamic analysis is the
signal energy related to the out-of-plane accelerations of the plate.
Consequently, the real-valued function b� introduced in Eq. �9� is
such that w� �p ,��=b��u� �p ,���=�2u� plate�p ,�� in which
u� plate�p ,�� is the complex vector constituted of the 1960 out-of-
plane displacements of the plate.

6.2 Reference Solution for the Master System. The refer-
ence observation in the master system is w� master���
=�2u� unc

plate�p ,��, in which u� unc
plate is the plate response correspond-

ing to the mean model of the master system �uncoupled with the
absorbers of the subsystem�. Figure 2 displays the graph of
��20 log10�w� master����. In Fig. 2, it can be seen that the level of
the reference solution for the mean master system is lower than
77.5 dB in the frequency band �350,750� Hz except for one single
peak whose resonance occurs at 571 Hz with level 80.5 dB, i.e.,
3 dB more.

6.3 Estimation of the Numerical Parameters for the Ro-
bust Design Optimization Problem. Let �Wmaster� j ,�� , j
=1, . . . ,ns� be the ns independent realizations of random variable
Wmaster���. The robust optimization problem needs to solve the
stochastic reduced equation, Eq. �15�. The numerical parameters
are then the dimension N of the reduced dynamical system and the
number ns of realizations used in the Monte Carlo numerical
simulation. Therefore, a convergence analysis has to be performed
with respect to N and ns for the stochastic reduced system. The
computation is performed for the dispersion parameters of the
master system such that �M

1 =�D
1 =�K

1 =0.05. A stochastic conver-
gence analysis with N2=n2+n�=54 is carried out in order to de-
fine the number N1 of modes to be kept in the modal reduction
and the number ns of realizations. The mean-square convergence
is analyzed by studying the function �ns ,N1��Conv�ns ,N1� de-
fined by

Fig. 1 Finite element mesh of the dynamical system: attached
spring „�…, attached lumped mass „�…, attached set of three
single DOF linear oscillators „�…, vibration absorbers „�…, exci-
tation node „�…, simply supported boundary „thick line…, and
free boundary „thick dashed line…

Fig. 2 Reference observation of the mean master system.
Graph of function �¾20 log10 „w� master

„2��……. Horizontal axis is
the frequency � in Hz.
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Conv�ns,N1� =� 1

ns
�
j=1

ns �
B

Wmaster� j,����2

d�1/2 �22�

in which Wmaster� j ,�� is calculated with a reduced model of di-
mension N=N1+N2. Figure 3 displays the graph of
ns�20 log10�Conv�ns ,N1�� for N1=300. It can be seen that a rea-
sonable convergence is reached for ns=300. Figure 4 displays the
graph N1�20 log10�Conv�ns ,N1�� for ns=300. Convergence is
reached for N1=225.

6.4 Target and Its Comparison With the Reference
Observation. As explained above, the robust design optimization
is carried out over the frequency band B1= �500,600� Hz. In band
B1, there are three main resonances. The higher resonance occurs
at 571 Hz with a level of 80.5 dB �see Fig. 5�. There are two
secondary resonances with a smaller level. The target is specified
in order that the two secondary responses be not modified and that
to reduce strongly the higher resonance. Figure 5 shows the target
��20 log10 �g���� related to the reference observation
��20 log10 �w� master���� defined in Sec. 6.2.

6.5 Case 1. Robust Design Optimization With Respect to a
Single Design Parameter. In the present case, the masses of the
oscillators of each vibration absorber constituting the subsystem
are assumed to be identical. The design parameter is the total mass
m of the subsystem. The robust design optimization is carried out
with �M

1 =�D
1 =�K

1 =0.05 for the master system and with �M
2 =�D

2

=�K
2 =0 for the subsystem �no uncertainties in the subsystem�.

Note that the subsystem is assumed to be deterministic for conve-

nience, the generalization to uncertain subsystems being straight-
forward. It has been verified that the numerical parameters iden-
tified from the convergence analysis of the stochastic master
system also yield convergent results for the stochastic reduced
system. Consequently, the robust design optimization is carried
out with N1=225, N2=54, and ns=300. The admissible set for
design parameter m is defined such that m� �4.5�10−7 ,1.8
�10−3� kg. We are interested in comparing the design optimiza-
tion �no uncertainties� with the robust design optimization �with
uncertainties� for a weighting factor �, which is chosen as 0.5.
The design optimization yields optimal design parameters mD

=2.6�10−4 kg and mRD=8.12�10−4 kg. A stochastic dynamical
analysis of each one of the two optimal designs is then carried out
in order to analyze the sensitivity of these two optimal designs
with respect to model and data uncertainties. Let �D���, �RD���
and 
D���, 
RD��� be the mean values and the standard devia-
tions of the random observations WD��� and WRD��� defined by
WD���=W�mD,��, WRD���=W�mRD,��. We obtain j�mD, 1

2
�

=7.9835�10−3 with 
DB1
=6.1924�10−2gB1

and j�mRD, 1
2

�
=7.2899�10−3 with 
RDB1

=5.8034�10−2gB1
. Clearly, the ro-

bust design optimization yields the optimal design point whether
it is with respect to the target performance objective or with re-
spect to the robustness performance objective.

Below, the sensitivity of the robust design optimization is ana-
lyzed with respect to the weighting factor �� �0,1 /2�. From Fig.
6, it can be seen that the mass of the robust design decreases with
the weighting factor �. For this application, the sensitivities of the
cost function and of the normalized standard deviation

RDB1

/ 
DB1
are sufficiently weak with respect to the weight-

ing factor �lower than 1.5%� to be neglected. For this reason, all
the results concerning the robust design optimization are pre-
sented for �=1 /2.

Similar to the stochastic case, let w� D���=w� �mD,�� and
w� RD���=w� �mRD,��. Figure 7 displays the comparison of the tar-
get with the response of the mean models corresponding to the
design optimization point and corresponding to the robust design
optimization point. It can be seen from this figure that the re-
sponses of the mean model, corresponding to these two design
points are different. In particular, the deterministic design point
yields a response of the mean model, which is closer to the target
than to the robust design point. Nevertheless, this kind of infor-
mation is not essential �see below�. For all � fixed in B, the
confidence interval of the random variable WRD��� is constructed
for a probability level Pc=0.95 using the sample quantiles �37�.
Let W̃RD�1 ,��� ¯ �W̃RD�ns

,�� be the order statistics.The up-

Fig. 3 Convergence analysis: graph of function
ns¾20 log10 „Conv„ns ,N1…… for the stochastic master system
with N1=300. Horizontal axis is ns.

Fig. 4 Convergence analysis: graph of function
N1¾20 log10 „Conv„ns ,N1…… for the stochastic master system
with ns=300. Horizontal axis is N1.

Fig. 5 Definition of the target �¾20 log10 „g„2��…… „thick
dashed line…. Comparison with the reference observation
�¾20 log10 „w� master

„2��…… „thin solid line… in the frequency band
B1= †500,600‡ Hz „horizontal axis….
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per interval w+��� and the lower interval w−��� delimiting the
confidence interval with probability level Pc are then given by

w+��� = W̃RD�k+
,�� k+ = fix�0.5ns�1 + Pc�� �23�

w−��� = W̃RD�k−
,�� k− = fix�0.5ns�1 − Pc�� �24�

in which fix�x� is the integer part of real x. Figure 8 compares the
reference solution �response of the mean master system�
��20 log10 �w� master���� with the confidence region of the robust
design optimization. In particular, the resonance of the reference
solution occuring at frequency 571 Hz has been reduced �about of
3 dB or 4 dB� by the robust design optimization process. It can be
seen that the response of the mean master system belongs to the
confidence region of the response of the stochastic system corre-
sponding to the robust design optimization except in the fre-
quency band B1 for which the target is active. Figures 9 and 10
compare the reference solution ��20 log10 �w� master���� with the
confidence regions of the random responses ��20 log10�WD����
corresponding to the design optimization and

��20 log10�WRD���� corresponding to the robust design optimi-
zation for a probability level Pc=0.95 in the frequency band B1.
In Fig. 10, there are five resonances, which occur at frequencies
508 Hz, 524 Hz, 539 Hz, 571 Hz, and 583 Hz. In Fig. 10, for
peaks 1 and 4, it can be seen that the robust design optimization
yields similar results to the design optimization. For peaks 2 and
5, the robust design optimization yields lower response levels.
Moreover, the confidence region is particularly narrow in the fre-
quency band �550,600� Hz, which means that the optimum design
is more robust with respect to model and data uncertainties than in

Fig. 6 Case 1. Sensitivity of the robust design optimization
with respect to the weighting factor �« ‡0,0.5‡: graph of
�¾mRD/mD

„thick line…, graph of �¾ j„mRD,�… „thick dashed
line…, and graph of �¾‖�RD‖B1

/‖�D‖B1
„thin dashed line…. Hori-

zontal axis is �.

Fig. 7 Case 1. Comparison of the target �¾20 log10 „g„2��……
„thick dashed line… with the response of the mean model corre-
sponding to the design optimization �¾20 log10 „w� D

„2��……
„thin dark gray line… and corresponding to the robust design
optimization �¾20 log10 „w� RD

„2��…… „thin light gray line… for �
=1/2. Horizontal axis is the frequency � in Hz.

Fig. 8 Case 1. Comparison of the reference observation
�¾20 log10 „w� master

„2��…… „thin solid line… with the confidence
region „light gray region… of random response for the robust
design, over the band B= †5,1200‡ Hz „horizontal axis… and for
�=1/2 and a probability level Pc=0.95. Horizontal axis is the
frequency � in Hz.

Fig. 9 Case 1. Comparison of the reference solution
�¾20 log10 „w� master

„2��…… „thin solid line… with the confidence
region „dark gray region… of the random response
�¾20 log10 „WD

„2��…… corresponding to the design optimiza-
tion and with the confidence region „light gray region… of the
random response �¾20 log10 „WRD

„2��…… corresponding to the
robust design optimization. Horizontal axis is the frequency �
in Hz.

Journal of Applied Mechanics MARCH 2008, Vol. 75 / 021001-7

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the frequency band �500,550� Hz. Finally, a sensitivity analysis
with respect to the level of uncertainty in the dynamical system is
carried out. Figure 11 displays the graph of ��mRD��� for �
=0.1 ���, for �=0.25 ���, and for �=0.5 ���.

6.6 Case 2. Robust Design Optimization With Respect to a
Multidimensional Design Parameter. In this section, no as-
sumption is made on the mass of the oscillators of each vibration
absorbers. Denoting as mi the mass of the oscillator number i, the
design parameter m is the R5 vector m
= �9m1 ,9m2 ,9m3 ,9m4 ,9m5�. The admissible set for design param-
eter m is such that m belongs to the five-dimensional hypercube
defined by m� �9�10−8 ,3.6�10−4�5. First, the design optimiza-
tion �no uncertainties� is carried out for several initial values of m,
which are randomly chosen in order to obtain the best local opti-
mum. The design optimization yields an optimal design parameter
mD= �4995,9 ,9 ,9 ,3024��10−8. This optimal design parameter is
then used as an initial value for the robust design optimization
problem. The weighting factor � is set to �=0.5. Two subcases
for which the subsystem is deterministic are presented; �1� a low
level of uncertainty in the master system ��M

1 =�D
1 =�K

1 =0.05�
yielding mRD= �6894,9 ,9 ,9 ,3582��10−8; �2� a medium level of
uncertainty in the master system ��M

1 =�D
1 =�K

1 =0.15� yielding
mRD= �1422,9 ,9 ,9 ,1062��10−8. For each case, Figs. 12 and 13
compare the reference solution ��20 log10 �w� master���� with the

10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and 90th quantiles of
the random responses ��20 log10 �WD���� corresponding to the
design optimization and of the random responses
��20 log10 �WRD���� corresponding to the robust design optimi-
zation in the frequency band B1. For the low uncertainty subcase,
it can be seen in Fig. 12 that robust design optimization yields
similar results to design optimization except for peak 4 for which
the response level is lower that corresponds to the target specifi-
cation. For the medium uncertainty subcase, Fig. 13 shows that
robust design optimization yields similar results to design optimi-
zation except for peak 4 for which the response level is lower and
for peak 5 for which the response level is higher. In this case, the
difference between the two cost functions is very small which
means that, for the dynamical system under consideration, the
robust design optimization does not improve the design optimiza-
tion for a higher level of uncertainty. Note that design optimiza-
tion shift the position of peaks 4 and 5 to the left and to the right,
respectively. Finally, it should be noted that both design optimi-

Fig. 10 Case 1. Comparison of the reference solution
�¾20 log10 „w� master

„2��…… „thin solid line… with the two confi-
dence regions defined in Fig. 9.

Fig. 11 Case 1. Sensitivity analysis for the robust design op-
timization: Graph of function �¾mRD

„�… for �=0.5 „thin line
with �…, for �=0.25 „thin line with �…, and for �=0.1 „thin line
with „�…. Horizontal axis is �.

Fig. 12 Case 2. Low uncertainty level. Comparison of the ref-
erence solution �¾20 log10 „w� master

„2��…… „thick solid line… with
the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and 90th quan-
tiles of the random response �¾20 log10„WD

„2��…… „thin black
lines… corresponding to the design optimization and of the ran-
dom response �¾20 log10„WRD

„2��…… „thin gray lines… corre-
sponding to the robust design optimization. Horizontal axis is
the frequency � in Hz.

Fig. 13 Case 2. Medium uncertainty level. Comparison of the
reference solution �¾20 log10 „w� master

„2��…… „thick solid line…
with the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and 90th
quantiles of the random response �¾20 log10 „WD

„2��…… „thin
black lines… corresponding to the design optimization and of
the random response �¾20 log10 „WRD

„2��…… „thin gray lines…
corresponding to the robust design optimization. Horizontal
axis is the frequency � in Hz.
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zation and robust design optimization have been solved by using a
sequential quadratic optimization algorithm. The calculations have
been made �1� in supplying the gradients of the cost function to
the algorithm and �2� in supplying the gradient and the Hessian of
the cost function to the algorithm using the numerical method
proposed in the Appendix. Method �2� allows a CPU time gain
about 30% to be obtained.

7 Conclusion
In this paper, we have presented an approach that allows the

robust design optimization problem to be formulated and solved
in presence of model uncertainties. Model uncertainties are taken
into account with a nonparametric probabilistic approach and a
target is introduced in the cost function. Thanks to an adapted
algebraic development and under several assumptions, the nu-
merical optimization problem can be solved with accuracy and
with a low numerical cost. The proposed robust design formula-
tion is general enough and the proposed approach can be used in
other cases for analyzing complex dynamical systems in compu-
tational mechanics. Concerning the limitations of the proposed
method, it should be noted that the gradient and the Hessian alge-
braically calculated can be used if the dynamical stiffness operator
and the input force are affine mappings of the vector-valued de-
sign parameter and if the projection basis can be constructed in-
dependently of the vector-valued design parameter and has rea-
sonable dimension. Note that if these conditions are not satisfied,
the theory presented can be used with an optimization algorithm
for which either the gradient and Hessian are not given or the
gradient and Hessian are numerically calculated. The case of ran-
dom loads is not investigated in this work but the extension is
straightforward. In addition, this paper is focused on robust design
with respect to model uncertainties. With respect to potential dif-
ficulties induced by the optimization algorithm when the dimen-
sion of the vector-valued design parameter is high, the proposed
method does not introduce new difficulties with respect to the
state of the art. The method has been validated for the five-
dimensional case. As a final comment, the two numerical ex-
amples presented in this paper show that there are differences
between design optimization and robust design optimization for
the structural dynamics problem considered.
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Appendix: Numerical Analysis Related to the Optimiza-
tion

In this Appendix, we summarize the algebraic development al-
lowing the gradient and the Hessian of cost function j�p ,�� re-
lated to the robust design optimization problem to be computed.
Such an algebraic development allows the precision in the opti-
mization algorithm to be increased. The developments presented
in this Appendix are valuable under the following assumptions:
�1� the dynamic stiffness operator and the force vector are affine
functions of the design parameter, and �2� the projection basis
related to the dynamical substructuring reduction method does not
depend of the design parameter.

1 Notation
Let �A� and �B� be m�n and p�q complex matrices. The

operator � is introduced such that �A�� �B� is the mp�nq com-
plex matrix defined by

�A���B� = � �A�11 �B� . . . �A�1n �B�
] � ]

�A�m1 �B� . . . �A�mn �B�
	 �A1�

Let b�p� be a vector in Cn and let �A�p�� be an m�n complex
matrix, which depends on the vector p= �p1 , . . . , ps� in Cs. Below,
when no confusion is possible, the argument p is removed in order
to simplify the writing.

The vector gb�p� is the vector in Cns defined by

gb�p� = ��p1
b, . . . ,�ps

b�

The vector hb�p� is the vector in Cns�s+1�/2 defined by

hb�p� = ��p1
2

2 b, . . . ,�p1ps

2 b,�p2
2

2 b, . . . ,�p2ps

2 b, . . . ,�ps
2

2 b�

The vector i�A�b is the vector in Cms defined by

i�A�b = ���p1
�A��b, . . . ,��ps

�A��b�

The vector j�A�b�p� is the vector in Cms�s+1�/2 defined by

j�A�b = ���p1
�A���p1

b, . . . ,��p1
�A���ps

b,��p2
�A���p2

b, . . . ,��p2
�A���ps

b, . . . ,��ps
�A���ps

b�

The vector k�A�b�p� is the vector in Cms�s+1�/2 defined by

k�A�b = ���p1
2

2 �A��b, . . . ,��p1ps

2 �A��b,��p2
2

2 �A��b, . . . ,��p2ps

2 �A��b, . . . ,��ps
2

2 �A��b�

2 Gradient and Hessian of the Cost Function for the
Stochastic Dynamical System

By using Eqs. �20�, the first-order and the second-order partial
derivatives of the cost function j�p ,�� with respect to p are writ-
ten as

�pi
j�p,�� =

1

gB1

E�2 Re�
B1

��W�p,�� − g����*�pi
W�p,�� + �1

− 2���W�p,�� − ��p,���*�pi
�W�p,�� − ��p,���d��

�A2�

�pipj

2 j�p,�� =
1

gB1

E�2 Re�
B1

��W�p,�� − g����*�pipj

2 W�p,��

+ ��pj
W�p,��*�pi

W�p,�� + �1 − 2���W�p,��

− g����*�pipj

2 �W�p,�� − ��p,��� + �1

− 2���pj
�W�p,�� − g����*�pi

�W�p,��

− ��p,���d�� �A3�

with summation over indices k, in which E is the mathematical
expectation, Re is the real part of a complex number, and where a
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starred vector is its transconjuguate. By using Eqs. �14� and �18�,
it can easily be shown that the Ck-valued random vectors W�p ,��,
�pi

W�p ,�� for i� �1, . . . ,s�, �pipj

2 W�p ,�� for 1� i� j�s can be
calculated from the CN-valued random vectors Q�p ,��,
�pi

Q�p ,�� for i� �1, . . . ,s�, �pipj

2 Q�p ,�� for 1� i� j�s.

3 Gradient and Hessian of the Random Vector of the
Random Reduced Coordinates

Let Q�p ,�� be the CNS-valued random vector defined by

Q�p,�� = � Q�p,��
gQ�p,��
hQ�p,��

	 �A4�

in which S=1+3s /2+5s2 /2 and N is the dimension of vector
Q�p ,��. Let �Ared�p ,��� be the random matrix with values in the
set of all the symmetric NS�NS complex matrices and let
Fred�p ,�� be the CNS-valued random vector such that

�Ared�p,��� = �IS����Ared
1 ���� + �Ared

2 �p,���� �A5�

Fred�p,�� = � fred�p,��
gfred

�p,�� − i�Ared
2 �Q�p,��

− j�Ared
2 �Q�p,�� − k�Ared

2 �Q�p,�� 	 �A6�

in which �IS� is the S�S identity matrix. From Eq. �15� and taking
into account that �Ared

1 ���� is independent of p, it can be shown
that the random vector Q�p ,�� is solution of the random matrix
equation

�Ared�p,���Q�p,�� = Fred�p,�� �A7�

It should be noted that the calculation of i�Ared
2 �Q�p ,��,

j�Ared
2 �Q�p ,��, and k�Ared

2 �Q�p ,�� requires the calculation of the

partial derivatives �pi
�Ared

2 �p ,��� for i= �1, . . . ,s� and
�pipj

2 �Ared
2 �p ,��� for 1� i� j�s. This calculation is carried out in

the next section.

4 Gradient of the Random Reduced Dynamical Stiff-
ness Matrix for the Stochastic Dynamical System

The method allowing the partial derivative �pi
�Ared

2 �p ,��� to be
algebraically calculated for i= �1, . . . ,s� is presented below. From
Eqs. �16� and �17�, it can be seen that the calculation of
�pi

�Ared
2 �p ,��� requires the calculation of �pi

�Ms
2�p��, �pi

�Ds
2�p��,

and �pi
�Ks

2�p��. Rewriting Eq. �12� for matrices �Ms
2�p��, �Ds

2�p��,
and �Ks

2�p�� yields

�Es
2�p�� = �LE

2�p��T�GE
2��LE

2�p�� �A8�

in which �Es
2�p�� denotes ��Ms

2�p�� , �Ds
2�p�� , �Ks

2�p���, �L� E
2�p�� de-

notes ��L� M
2 �p�� , �L� D

2 �p�� , �L� K
2 �p���, and �GE

2� denotes
��GM

2 � , �GD
2 � , �GK

2 ��. In Eq. �A8�, the matrix �GM
2 � is a random

matrix with values in the set of all the symmetric N2�N2 positive
definite matrices and matrices �GD

2 �, �GK
2 � are random matrices

with values in the set of all the symmetric �N2−r�� �N2−r� posi-
tive definite matrices. Matrix �L� E

2�p�� is such that

�Es
2�p�� = �LE

2�p��T�LE
2�p�� �A9�

in which �L� M
2 �p�� is a N2�N2 upper triangular real matrix ob-

tained by Cholesky factorization and where �L� D
2 �p��, �L� K

2 �p�� are
N2� �N2−r� real matrices. In addition, according to Eq. �3�, the
matrix �E� s

2�p�� can be written as

�Es
2�p�� = �Es

2,0� + �
i=1

s

pi�Es
2,i� �A10�

Taking the partial derivative of Eq. �A8� with respect to pi, the
matrix �pi

�Es
2�p�� is given by

�pi
�Es

2�p�� = ��pi
�LE

2�p��T��GE
2��LE

2�p�� + �LE
2�p��T�GE

2���pi
�LE

2�p���

�A11�

Using Eqs. �A9� and �A10�, the matrix �pi
�L� E

2�p�� is computed in
solving the following matrix equation:

�Es
2,i� = ��pi

�LE
2�p��T��LE

2�p�� + �LE
2�p��T��pi

�LE
2�p��� �A12�

5 Hessian of the Random Reduced Dynamical Stiff-
ness Matrix for the Stochastic Dynamical System

The method allowing the partial derivative �pipj

2 �Ared
2 �p ,��� to

be algebraically calculated for 1� i� j�s is presented. Taking
the partial derivative of Eq. �A11� with respect to pj, the matrix
�pipj

2 �Es
2�p�� is given by

�pipj

2 �Es
2�p�� = ��pipj

2 �LE
2�p��T��GE

2��LE
2�p�� + ��pi

�LE
2�p��T��GE

2�

���pj
�LE

2�p��� + ��pj
�LE

2�p��T��GE
2���pi

�LE
2�p���

+ �LE
2�p��T�GE

2���pipj

2 �LE
2�p��� �A13�

Taking the partial derivative of Eq. �A12�, the matrix �pipj

2 �L� E
2�p��

is computed by solving the following matrix equation:

− ��pi
�LE

2�p��T���pj
�LE

2�p��� − ��pj
�LE

2�p��T���pi
�LE

2�p���

= ��pipj

2 �LE
2�p��T��LE

2�p�� + �LE
2�p��T��pipj

2 �LE
2�p��� �A14�
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The Support Reaction of a Simply
Supported and Uniformly Loaded
Thin Circular Aeolotropic Plate
A previous analytical solution of the deflection of a thin circular aeolotropic plate, with
simply supported edge and uniform lateral load, has been used to derive approximate
series expressions for the plate support reaction, which are directly applicable in prac-
tice. The support reaction, which has been calculated for some typical anisotropic mate-
rials of varying degree of anisotropy, varies significantly along the plate perimeter and
strongly anisotropic materials require in general a higher order series solution. Certain
solution constants of previous deflection approximations were not found to harmonize
and are therefore recalculated. �DOI: 10.1115/1.2775494�
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1 Introduction
The Kirchhoff bending theory applied to a thin circular aniso-

tropic plate, clamped on the boundary, and carrying a uniform
lateral load is surprisingly simple and straightforward, see, e.g.,
Timoshenko and Woinowsky-Krieger �1�. This is also true for an
elliptic plate in which the material and geometric principal axes
coincide. The analysis of a simply supported circular anisotropic
plate, on the other hand, is much more complicated. Okubo �2�
applied the complex variable method of Morkovin �3� to derive
approximate expressions for the deflection of a circular plate and
related items, e.g., bending moments and their extrema, bending
stresses, etc., but he did not solve for the support reaction, which
would have completed the analysis of the plate problem consid-
ered. The aim of the present work is to fill this gap and to this end
approximate expressions of the support reaction of a thin circular
aeolotropic plate, with simply supported edge and uniform lateral
load, have been derived. For any set of plate characteristics �i.e.,
bending rigidities, plate parameters, and a uniform load�, the sup-
port reaction can be calculated through numerical evaluation of an
explicit expression. There are two steps in the solution procedure:
In the first, Okubo’s plate problem is solved in order to obtain a
set of plate parameters and in the second step, the present work,
these parameters and the set of plate characteristics are used to
obtain the support reaction. The entire procedure assumes famil-
iarity with Okubo’s theory.

The solution procedure can in practice be applied to, e.g., an-
isotropic structural components in the form of an isotropic plate
reinforced with parallel stiffeners, as such components with rea-
sonable approximation can be analyzed within the theory of an-
isotropic thin plates. An engineering problem of this kind origi-
nally initiated this work and a satisfactory solution was found
through application of the present procedure. The support reaction
is dependent on position and therefore the extreme values and
their position on the plate perimeter were of primary interest in
the case concerned.

The work of Okubo �2� seems to have gone unnoticed for some
time but a recent application can be found in Ref. �4� where
stresses in circular aeolotropic plates, subjected to a uniform lat-
eral load, have been calculated and a later extension in Ref. �5�
where the deflection of an elliptic plate has been rederived, con-

trasting a previous solution by Ohasi �6�. In the course of the
analysis, it was further found that certain results in Ref. �2� could
not be reproduced, in that different sets of solution constants were
not found to harmonize. The results of the pertinent recalculations
are given in the Appendix.

2 Plate Equation and Its Solution
For a material with three planes of elastic symmetry, the plate

equation �1� takes the form

D1
�4w

�x4 + 2�D2 + D4�
�4w

�x2�y2 + D3
�4w

�y4 = q �1�

in Okubo’s notation. Here x,y are Cartesian coordinates, w the
deflection of the plate, q the intensity of the lateral load, and Di,
i=1, . . . ,4 bending rigidities. The notation of Okubo is retained
for simplicity and to facilitate comparison with his work. In cur-
rent notation,

D11 = D1 D12 = D2 D22 = D3 D66 = D4/2 �2�

A solution to Eq. �1� can be found by using the complex variable
method �3�. A special case of the general form of the homoge-
neous part wH of w, used by Okubo, to obtain the deflection func-
tion for a thin, circular plate of unit radius, unit thickness, and unit
applied load intensity, is

wH = Re�f1�x + ik1y� + f2�x + ik2y�� �3�

where f1,f2 are the arbitrary functions and k1,k2 the roots of the
characteristic equation

D1 − 2�D2 + D4�k2 + D3k4 = 0 �4�

obtained through substitution of Eq. �3� in Eq. �1�. The general
solution to Eq. �1� is then
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w = wH + wP =
c�2

4 �
n=2

�

An� cosh�2n + 2���

�2n + 2��2n + 1�
cos�2n + 2�� − � 1

�2n + 1�2n
+

1

2n�2n − 1��
�cosh 2n�� cos 2n� +

cosh�2n − 2���

�2n − 1��2n − 2�
cos�2n − 2��	 +

c�2

4 �
n=2

�

Bn� cosh�2n + 2���

�2n + 2��2n + 1�
cos�2n + 2��

− � 1

�2n + 1�2n
+

1

2n�2n − 1��cosh 2n�� cos 2n� +
cosh�2n − 2���

�2n − 1��2n − 2�
cos�2n − 2��	 + C1x4 + C2x2y2 + C3y4 + C4x2 + C5y2 + C6

�5�

where wP is a particular solution, given on the last line in Eq. �5�.
The angle � is taken positive counter clockwise with �=0 on the
positive x axis. The constants c�,c� in Eq. �5� and constants a�,a�
to appear below are determined from k1,k2 and geometrical con-
ditions in mapping the Cartesian coordinates onto two sets of
curvilinear coordinates ��,� and ��,�, while C1–C6, An,Bn are
determined by the boundary conditions of the plate, see Ref. �2�
for derivation details.

Okubo’s solution is applicable to the special case in which ma-
terial principal axes and geometrical axes coincide. This condition
is trivial for a circular plate. Okubo also determined the plate
deflection along the x and y axes, respectively, bending moments,
stresses and related items, etc., except the support reaction, which
is dealt with in the next section.

3 Plate Support Reaction
The equivalent shearing force at the boundary of a plate is �1�

V�� = Q� −
�M��

a��
�6�

Here, � and � are the normal and tangential directions to the
boundary of the plate, respectively, and a the plate radius, equal to
unity for a plate of unit radius.

Q� = Qx cos � + Qy sin � �7�
and

M�� = �Mx − My�sin � cos � + Mxy�cos2 � − sin2 �� �8�
The shearing forces are

Qx = −
�

�x
�D1

�2w

�x2 + �D2 + D4�
�2w

�y2 � �9a�

Qy = −
�

�y
�D3

�2w

�y2 + �D2 + D4�
�2w

�x2 � �9b�

and the bending and twisting moments

Mx = − 
D1
�2w

�x2 + D2
�2w

�y2 � �10a�

My = − 
D3
�2w

�y2 + D2
�2w

�x2 � �10b�

Mxy = D4
�2w

�x�y
�10c�

in which the curvatures are �2�

�2w

�x2 = �
n=2

�

�An cosh 2na� + Bn cosh 2na��cos 2n� + 6C1 + C2

+ �6C1 − C2�cos 2� + 2C4 �11a�

�2w

�y2 = − �
n=2

�

�Ank1
2 cosh 2na� + Bnk2

2 cosh 2na��cos 2n� + 6C3 + C2

− �6C3 − C2�cos 2� + 2C5 �11b�

�2w

�x�y
= − �

n=2

�

�Ank1 sinh 2na� + Bnk2 sinh 2na��sin 2n�

+ 2C2 sin 2� �11c�

The auxiliary complex variable �=�+ i� admits the identity

x + iky = c cosh � �12�
cf. Eqs. �5� in Ref. �2�. From Eq. �12�, the derivatives

��

�x
=

1

c sinh �
�13a�

and

��

�y
=

ik

c sinh �
�13b�

are obtained. The partial derivatives of the deflection function in
Qx and Qy of the form �cosh 2n� cos 2n��,x, etc., where � �,x de-
notes differentiation with respect to x, are complex, and can con-
veniently be obtained through differentiation of an associated
complex function. A suitable associated function is cosh 2n�,
since its real part is cosh 2n� cos 2n�. For example, for n=2, we
have, on the one hand,

�cosh 4��,x = 4
��

�x
sinh 4� =

16

c
cosh 2� cosh � �14�

where

cosh 2� cosh � = 1��cosh 2� cos 2���cosh � cos ��

− �sinh 2� sin 2���sinh � sin ���

+ i��cosh 2� cos 2���sinh � sin ��

+ �sinh 2� sin 2���cosh � cos ��� �15�

Note that the factors of 1 and i in this expression are complex and
do not denote the real and imaginary parts, respectively, of the
derivative �cosh 4��,x.

On the other hand, we have

�cosh 4��,x = �cosh 4� cos 4� + i sinh 4� sin 4��,x
= �cosh 4� cos 4��,x + i�sinh 4� sin 4��,x �16�

Identification of corresponding terms yields

�cosh 4� cos 4��,x =
16

c
��cosh 2� cos 2���cosh � cos ��

− �sinh 2� sin 2���sinh � sin ��� �17a�

and similarly for the y derivative
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�cosh 4� cos 4��,y = − k
16

c
��cosh 2� cos 2���sinh � sin ��

+ �sinh 2� sin 2���cosh � cos ��� �17b�

and so on for functions of increasing n.
In this procedure, we have exploited the fact that the rule of

addition for the hyperbolic cosine function of a complex argu-
ment, on the one hand, and differentiation, on the other, are com-
mutative. The manipulation of the function cosh 2n� for increas-
ing n is cumbersome to generalize and individual manipulations
are often most convenient. A common feature, however, is that
sinh �, the denominator in Eqs. �13a� and �13b�, is always a factor
of sinh 2n�.

Substitution of Eqs. �9� and �11� in Eq. �7� and using the pro-
cedure given by Eqs. �12�–�16�, �17a�, and �17b� yield

Q� = − 4�3D1C1 + �D2 + D4�C2 + 3D3C3 + 3�D1C1

− D3C3�cos 2�� −
2

c�
�D1 − k1

2�D2 + D4���
n=2

�

2nAngn�a�,��

−
2

c�
�D1 − k2

2�D2 + D4���
n=2

�

2nBngn�a�,�� −
2k1

c�
�k1

2D3 − �D2

+ D4���
n=2

�

2nAnhn�a�,�� −
2k2

c�
�k2

2D3 − �D2

+ D4���
n=2

�

2nBnhn�a�,��

= − 4�3D1C1 + �D2 + D4�C2 + 3D3C3 + 3�D1C1

− D3C3�cos 2�� − � �Q��n �18�

where the two first terms of the functions gn and hn are

g2��,�� = 2 cosh 2� cosh � cos 2� cos2 � − sinh 2� sinh � sin2 2�

�19a�

g3��,�� = �2 cosh 4� cos 4� + 1�cosh � cos2 �

− sinh 4� sinh � sin 4� sin 2� �19b�

h2��,�� = 2 cosh 2� sinh � cos 2� sin2 � + sinh 2� cosh � sin2 2�

�19c�

h3��,�� = �2 cosh 4� cos 4� + 1�sinh � sin2 �

+ sinh 4� cosh � sin 4� sin 2� �19d�
Further, Eqs. �10� and �11� inserted in Eq. �8� yield the twisting
moment on the boundary

M�� =
1

2
��D2 − D1�

�2w

�x2 + �D3 − D2�
�2w

�y2 �sin 2� + D4
�2w

�x�y
cos 2�

�20�
from which is obtained the derivative along the boundary

�M��

��
= �6�D2 − D1�C1 + �D3 − D1�C2 + 6�D3 − D2�C3 + 2�D2 − D1�C4 + 2�D3 − D2�C5�cos 2� + �6�D2 − D1�C1 + �D1 − 2D2 + D3

+ 4D4�C2 + 6�D2 − D3�C3�cos 4� −
1

4
�n=2

�

�2n − 2�An��D2 − D1 − k1
2�D3 − D2��cosh 2na� + 2D4k1 sinh 2na� + �

n=2

�

�2n

− 2�Bn��D2 − D1 − k2
2�D3 − D2��cosh 2na� + 2D4k2 sinh 2na��cos�2n − 2�� +

1

4
�n=2

�

�2n + 2�An��D2 − D1 − k1
2�D3

− D2��cosh 2na� − 2D4k1 sinh 2na� + �
n=2

�

�2n + 2�Bn��D2 − D1 − k2
2�D3 − D2��cosh 2na� − 2D4k2 sinh 2na��cos�2n + 2��

�21�

for a plate of unit radius.
Finally, the support reaction V�=−V�� is

V� = − Q� +
�M��

��
= 4�3D1C1 + �D2 + D4�C2 + 3D3C3� + �6�D1

+ D2�C1 + �D3 − D1�C2 − 6�D3 + D2�C3 + 2�D2 − D1�C4

+ 2�D3 − D2�C5�cos 2� + �6�D2 − D1�C1 + �D1 − 2D2 + D3

+ 4D4�C2 + 6�D2 − D3�C3�cos 4� + � �Q��n

+ � ��M��/���n �22�

where ��Q��n and ���M�� /���n denote the summation terms in
Eqs. �18� and �21�, respectively.

The support reaction V� for a given material is calculated in
two steps. In the first step, the constants k1 ,a� ,c�, etc., are deter-
mined and then the equation system consisting of Eqs. �10�–�12�
in Ref. �12�, which represents the simply supported boundary con-

ditions of vanishing deflection and moment along the plate edge,
is solved in order to obtain the constants Ci, i=1, . . . ,6 and An ,Bn,
for n�2 until some convergence criterion is fulfilled. The subse-
quent solutions of increasing order n, which ideally converge to-
ward a hypothetical exact solution, are approximate in that the
boundary condition of vanishing radial bending moment on the
plate boundary is not fully satisfied in Okubo’s equation system,
leaving a residual moment

Mres = −
1

2
�An
1

2
�D1 − D2 − k1

2�D2 − D3�cosh 2na��

+ k1D4 sinh 2na�� + Bn
1

2
�D1 − D2 − k2

2�D2

− D3�cosh 2na�� + k2D4 sinh 2na���cos 2n�

= f res cos 2n� �23�
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where n is here the number of the last term in the series expansion
of w. For known solutions, see, e.g., Refs. �2,5�, f res decreases
rapidly as n increases, which indicates rapidly converging solu-
tions. In the second step, the support reaction is calculated with
Eq. �22� and data obtained in the first step.

In Eq. �21�, it is easily seen that the mean value and thus the
resultant force of the terms with origin in �the derivative of� the
twisting moment along the plate boundary vanish. On the other
hand, some terms in the functions gn and hn in Eq. �19� have a
mean value along the boundary that is not zero. However, on
account of the characteristic equation �4�, these nonzero mean
values cancel out and they yield, in fact, a vanishing resultant. The
nonzero resultant part of the support reaction comes from the
constant part along the plate perimeter. Equation �22�, after sub-
stitution of Eq. �1� and integrated over the plate perimeter, results
in �0

2�V�d�=�, which amounts to the total load on a plate of unit
radius and unit load intensity. The mean value of V� is then 0.5, as
required for equilibrium. This argument holds independently of
the anisotropic properties of a plate and therefore, in particular, for
an isotropic plate. In the latter case, the value of the reaction
around the plate perimeter is furthermore constant and equal to
0.5. This feature is not seen directly in Eq. �22� and pertaining
expressions and is therefore further dealt with in the Appendix.

In engineering applications, solutions for an arbitrary plate ge-
ometry and load are required. For a plate with radius a, thickness
h, and a uniform load q, the support reaction V, which is propor-
tional to qa /h3, is obtained from the dimensionless support
reaction

V/�qa� = V�/h3 �24�

where V� is given by Eq. �22�.

4 Applications
In order to illustrate the outcome of Eq. �22�, the support reac-

tion has been calculated for a number of materials, selected so as
to represent a wide variety of anisotropic materials commonly
used in practice. In particular, the ratio of the elastic moduli in
perpendicular material directions spans a wide range. The materi-
als are shown in Table 1 with properties as given in the referenced

works. The Cij are the elastic constants, E11 and E22 the elastic
moduli, G12 the shear modulus, and �12 Poisson’s ratio. The bend-
ing rigidities Di were calculated from the elastic constants with
the expressions

D1 =
h3

12

C11 −

C12
2

C22
� �25a�

D2 =
h3

12

C13 −

C12C23

C22
� �25b�

D3 =
h3

12

C33 −

C23
2

C22
� �25c�

D4 =
h3

6
C44 �25d�

respectively, for Materials a, b, and c and from the elastic moduli,
etc., through

D1 =
h3

12

E11

1 − �E11/E22��12
2 �26a�

D2 = �12D3 �26b�

D3 =
h3

12

E22

1 − �E11/E22��12
2 �26c�

D4 =
h3

6
G12 �26d�

respectively, for Materials f, g, and h. For Material e, the bending
rigidities are calculated in the Appendix. The selection of material
axes for Material a, which is cubic symmetric �for symmetry clas-
sification, see, e.g., Ref. �13��, means that the result applies to a
plate containing any pair of two material principal axes in its
plane. For Materials b and c, which are tetragonal, the material
principal axis normal to the plane of isotropy lies in the plane of
the plate. The elastic constant in this �normal� direction is in both
cases smaller than the two others, which in turn are equal. In the
calculations, the y axis is oriented along the stiffest direction of a
material, which means in terms of bending rigidities that D3
�D1. Calculated bending rigidities are shown in Table 2.

In the first step of the solution procedure, the roots k1 and k2 of
Eq. �4� are determined. The roots are either real or complex and
form in the latter case a pair of complex conjugates. The materials
are classified according to a two-dimensional anisotropy indicator

�	,
� = �D1,D2 + D4�/D3 �27�
which can be taken as a measure of deviation from isotropy as
�	 ,
�= �1,1� for an isotropic material. The dimensionless num-
bers 	 and 
 can here be seen as relative bending rigidities and are
determined by normalizing Eq. �4� such that the factor of k4 be-
comes unity. The numbers 	 and 
 are applicable to plate prob-
lems in general as their analogs also appear in the biharmonic

Table 1 Materials and material properties

�a� Nickel aluminide �7�
C11=211.5 C12=143.2 C44=112.1 �GPa�

�b� PZT-5H �8�
C11=126 C12=55 C13=53 C33=117 C44=35.3 �GPa�

�c� PZT-4 �9�
C11=139 C12=77.8 C13=74.3 C33=113 C44=25.6 �GPa�

�d� Orthotropic �10�
E11=48.3 E22=17.3 G12=6.9 �GPa�
�12=0.3

�e� Orthotropic, from Ref. �2�, see Appendix
D1=8.605 D2=4.366 D3=50.59 D4=13.00 �force� length�
for a plate of unit thickness, units unknown

�f� Bor N5505 �12�
E11=204 E22=18.5 G12=5.59 �GPa�
�12=0.23

�g� Graphite epoxy �11�
E11=150 E22=9 G12=7.1 �GPa�
�12=0.3

�h� H-IM6 epoxy �12�
E11=203 E22=11.2 G12=8.4 �GPa�
�12=0.32

Table 2 Bending rigidities Di „N m…

Material D1 D2 D3 D4

a 9.547 3.855 9.547 18.68
b 7.892 2.489 8.499 5.883
c 6.107 2.726 7.954 4.267
d 1.49 0.447 4.159 1.15
ea 8.605 4.366 50.59 13
f 1.556 0.498 17.16 0.932
g 0.7541 0.2262 12.57 1.183
h 0.9386 0.3003 17.01 1.4

aSI units are assumed for this material.
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differential equation for in-plane loading. The 	 and 
 values for
all materials are shown in Fig. 1. The solid line in the figure is
defined by the condition


2 − 	 = 0 �28�
which separates regions of different types of root of Eq. �4�. For a
�	 ,
� point situated above, on, or under the line, there are two real
roots, a real double root, or two complex conjugating roots, re-
spectively. The ratio of the smallest to the largest 	 is of the order
1–60, thus spanning a wide range of anisotropy.

For the first three materials �a–c�, the root pairs k1 and k2 are
real for each material �the second and the third material fall just
above the line �28��, while for the remainder �d–h�, the root pairs
are complex.

This behavior also appears in the solution of the equation sys-
tem, Eqs. �10�–�12� in Ref. �2�. For real roots of Eq. �4�, the
constants An ,Bn are real and vice versa. Thus, the type of con-
stants, real or complex, in the solution is determined solely by
material properties. In particular, real constants do not indicate
incipient convergence of a solution and complex constants do not
indicate a large residue. Note that the final solution is always real
and for a solution with complex constants the imaginary parts are
conjugates.

The 	 and 
 parameters have been found useful for classifying
anisotropic materials in thin plate bending problems and they
serve as an indicator of the order of a solution necessary to obtain
a certain accuracy.

The constants Ci ,An ,Bn, and the residual moment f res from the
first solution step for all materials are shown in Table 3 for n=4.
The constants have previously been calculated for the materials a
and g and n=3 in Ref. �4�. For Material a, the constants An ,Bn are
virtually zero for n�3. This means that the present result is iden-
tical to the previous and that a second order approximation is
satisfactory. For Material g, the constants A4 ,B4 in the present
work are small but still significant. This means that the accuracy
of a third order approximation is less than that of a fourth order
approximation. Note that, although of the same order, all constants
are different in the two approximations, as they are obtained
through solution of two different equation systems. A given con-
stant in a third order approximation is in general different from the
corresponding constant in a fourth order approximation. For ex-
ample, A2�n=3� is different from A2�n=4�.

The support reaction for all materials, obtained in the second
solution step, is shown in Fig. 2. In order to check accuracy and
convergence of approximations of increasing order, the support
reaction is shown for the approximations of order n=2–4. All
solutions have a jump between the first approximation �the par-
ticular solution only, not shown here� and subsequent approxima-
tions, which are much more close and meandering around one
another. The relative difference calculated with the expression

�Va�n = 2 or 3� − V��n = 4��
�V��m

�29�

where �V��m is the mean value of the support reaction �=0.5�, is
assumed to be a reasonable estimation of the error in relation to
the exact solution. It is also assumed that an error of the order a
few percent of the support reaction, estimated in this way, is ac-
ceptable in most engineering applications.

Fig. 1 Relative bending rigidity. Materials a–h form top right to
down left.

Material 	=D1 /D3 
= �D2+D4� /D3
a 1 2.361
b 0.929 0.985
c 0.768 0.879
d 0.358 0.384
e 0.17 0.343
f 0.091 0.083
g 0.06 0.112
h 0.055 0.1

Table 3 Residual moment „Eq. „23…… and constants Ci „in units of 10−3 GPa−1
…, etc., for n=4

Material f res C1 C2 C3 C4 C5 C6

�a� Nickel aluminide 0 1.392 2.009 1.392 −7.253 −7.253 5.958
�b� PZT-5H 10−7 1.912 3.776 1.887 −9.655 −9.63 7.746
�c� PZT-4 10−7 2.293 4.463 2.17 −10.93 −10.8 8.635
�d� Orthotropic �C and C� −0.033 6.711 14.22 5.794 −32.31 −31.52 25.45
�e� Orthotropic �O� −0.109 0.7161 1.395 0.5422 −3.177 −3.023 2.454
�f� Bor N5505 −0.660 2.872 6.619 1.984 −11.61 −11.05 8.683
�g� Graphite epoxy −0.803 4.067 9.095 2.731 −16.33 −15.53 12.24
�h� H-IM6 epoxy −0.873 3.123 6.990 2.044 −12.26 −11.62 9.126

Material A2 B2 A3 B3 A4 B4

�a� 0.474 −0.105 0 0 0 0
�b� 1.82 10−3 −7.26 10−4 10−6 10−7 10−10 0
�c� 1.81 10−5 −9.17 10−7 10−8 10−10 10−11 0
�d� −0.395� i0.50 �7.59� i0.206� 10−3 �7.12� i1.80� 10−4

�e� −�8.95� i1.40� 10−2 −�5.0� i2.15� 10−3 −�1.89� i2.45� 10−4

�f� −1.56� i0.986 −�6.38� i0.29� 10−2 �9.51� i0.85� 10−3

�g� −2.81� i0.413 −0.316� i0.278 −�2.15� i5.26� 10−2

�h� −2.32� i0.365 −0.274� i0.243 −�1.98� i4.79� 10−2
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Due to symmetry, the support reaction for only one-fourth, or
90 deg, of the plate perimeter is given in general. In one case �Fig.
2�a��, this range is further halved to 45 deg, as 	=1 for this ma-
terial. As expected, the support reaction varies with position
around the plate perimeter and its variation is related to the aniso-

tropy of the material. Also, all curves are duly horizontal at points
indicating material principal axes ��=0 deg and 90 deg�, as ex-
pected from reasons of symmetry. Note the different load scaling
in Figs. 2�b� and 2�c�, where the variation of the support reaction
is very small.

Fig. 2 Dimensionless support reaction versus position on plate perimeter for materials a–h
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All materials, except the first, are stiffest in the y direction and
it is therefore intuitively reasonable to expect the maximum of the
reaction to appear closer to �=90 deg than to �=0 deg and vice
versa for the minimum reaction. A similar argument goes for the
extreme values of the reaction of the first material, for which the
corresponding values of � are 0 deg and 45 deg, respectively. In
general, the minimum and the maximum of the reaction appear at
�=0 deg and 90 deg or at �=45 deg and 0 deg, respectively, and
the reaction is varying monotonously, or almost so, between the
extreme values. There are two exceptions to this general behavior,
the Materials b and d. In Material b, the reaction appears almost
constant in a wide range of the order 30 deg, starting at �
=0 deg and the minimum reaction appears to occur at an angle of
the order 20 deg. In Material d, a corresponding behavior is seen
in an equally wide range ending at �=90 deg and with maximum
close to 70 deg. Due to the flatness of the curves, a small calcu-
lation error may displace the location of an extreme value greatly
in the ranges concerned. In practice, this feature is of little or no
concern.

The support reaction is partly negative for the last three mate-
rials, Figs. 2�f�–2�h�. For a support not carrying negative loads,
such materials will rise from the support in a neighborhood of
�=0 deg when loaded and thus partly invalidate the present
solution.

With respect to accuracy of the solutions, i.e., the order of ap-
proximation necessary to obtain a support reaction within the lim-
its of engineering accuracy, the materials investigated are some-
what arbitrarily divided into three groups, which are denoted
weakly, ordinary, and strongly anisotropic materials, respectively.

For weakly anisotropic materials, the second and higher ap-
proximations virtually coincide and an approximation of order 2 is
therefore quite sufficient. Weakly anisotropic materials have 	 and

 close to 1 and they satisfy the empirical relation

D2 + D4  3D3 − 4.5D1 �30�

The Materials a–c belong to this group.
For ordinary anisotropic materials, a third order approximation

is accurate for most materials. The error at the maximum of the
support reaction along the plate perimeter and in the main part of
the � range is of the order 1% or smaller but increases near mini-
mum to typically 2–3%. Materials in this group satisfy the empiri-
cal relation

3D3 − 4.5D1  D2 + D4  D3 − 4.5D1 �31�

This group includes the Materials d and e. Strongly anisotropic
materials satisfy

D2 + D4 � D3 − 4.5D1 �32�

and require a fourth order approximation in order to obtain engi-
neering accuracy of the support reaction. The error at the maxi-
mum of the support reaction and in the main part of the � range is
of the order 1% and increases near minimum to typically 3–4%.
This group is exemplified by the Materials f–h, all three materials
characterized by a partly negative support reaction. As seen in
Table 3, for materials in this group, and at least with constants Ci
of the order 15, say, and smaller, A4 and B4 constants of order
10−2 can be tolerated without exceeding an error of 3–4% in the
support reaction. In comparison, for ordinary anisotropic materi-
als, A4 and B4 are of the order 10−4 and the error of the support
reaction is smaller than 2–3%.

The residual bending moment f res, Table 3, is a further indicator
of the anisotropic character of a material in bending, because f res
vanishes for an isotropic material. For weak anisotropy f res is
virtually zero and for strong anisotropy f res is significantly greater
than for ordinary anisotropy, although the figure has no absolute
meaning. These relations apply for a given value of n. Further, the
stronger the anisotropy of a given material the greater is also the
value of n required to obtain an f res smaller than a fixed limit.

Until further and sufficient experience is gained from investi-
gations of a greater number of materials satisfying Eq. �32�, an
approximation of the fourth order of the support reaction seems to
be a safe recommendation for engineering applications.

5 Discussion
The bending theory of a thin circular aeolotropic plate, with

simply supported edge and uniform lateral load, first derived by
Okubo �2�, has been extended to include the plate support reac-
tion, which was absent in the original theory. Approximate series
expressions for the plate support reaction, which are directly ap-
plicable in practice, have been derived. The support reaction has
been calculated for several materials, which were selected to rep-
resent a wide variety of anisotropic materials commonly used in
practice. The reaction varies significantly along the plate perim-
eter and strongly anisotropic materials require in general a higher
order series approximation to obtain engineering accuracy of the
solution. With respect to anisotropy, the materials investigated
have been divided into three different categories denoted weakly,
ordinary, and strongly anisotropic materials and empirical rela-
tionships for classifying a given material are suggested.

The results in this work follow from up to eight order polyno-
mial approximations of the deflection an anisotropic plate, which
satisfy the plate equation. The plate reaction is subsequently cal-
culated with standard thin plate theory. Neither any alternative
analytical solution nor experimental results or numerical calcula-
tions in relation to the present problem are known to the author.
Confirmation lacking, the results are presented tentatively and are
recommended to be treated as such for the time being.
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Appendix

1 Limit Value of the Homogeneous Solution
In the isotropic case, the plate rigidities are related through the

identities

D1 = D2 + D4 = D3 �A1�
and the solutions of Eq. �4� are

k1 = k2 = 1 �A2�
Further, there are no unique material axes and the coefficients of
the particular solution are related through

C1 = C3 C2 = 2C1 C4 = C5 �A3�
On account of the mapping conditions following Eqs. �5� in Ref.
�2�, we have

c� = �1 − k1
2 �A4a�

and

c� = �1 − k2
2 �A4b�

From Eq. �A2�, it follows that in this case

c� = c� = 0 �A5�
Then, from Eq. �5�, it is seen directly that the homogeneous solu-
tion vanishes for an isotropic plate and only the particular solution
�V��P in Eq. �22� remains

�V��P = 4�3D1C1 + �D2 + D4�C2 + 3D3C3� + �6�3D1 + D2�C1 + �D3

− D1�C2 − 6�3D3 + D2�C3�cos 2� + �6�D2 − D1�C1 + �D1

− 2D2 + D3 + 4D4�C2 + 6�D2 − D3�C3�cos 4� �A6�
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in which use has been made of Eq. �12:2� in Ref. �2� for
simplification.

The value of the constant part of �V��P is 0.5, as discussed in
Sec. 3. Very short calculations show that the factors of cos 2� and
of cos 4� are both zero, on account of Eqs. �A1� and �A3�.

In summary, in the case of an isotropic plate, the reaction is
constant and of value 0.5.

A somewhat more elaborated procedure is required to show that
the homogeneous part of the solution �22�, in fact, tends toward
zero as a set of hypothetical anisotropic material properties tends
toward isotropy. A formal proof is beyond the scope of this paper
but a brief sketch is as follows.

For an isotropic material, it is seen by inspection that the coef-
ficients of An and Bn in the equation system Eqs. �10�–�12� in Ref.
�2� are equal for each equation and each n. This equation system
is part of the first step in the two-step procedure to obtain V�. In
the coefficient matrix of this equation system, the columns of a
pair An and Bn are thus identical. This means that the only pos-
sible solution of the equation system is Bn=−An. Further, in the
summation terms of Eqs. �18� and �21�, the factor of a given An is
equal to the factor of the corresponding Bn. These two features
taken together mean that all terms in the sums will cancel each
other pairwise. The total sum value of the homogeneous solution
is thus zero.

For a set of anisotropic material properties tending toward isot-
ropy, all forms of “be,” etc., above can be thought of as “tend to”
and the vanishing total of the homogeneous solution is thus the
limit value at isotropy. Thus, in the limit for an anisotropic mate-
rial tending toward isotropy, the value of the reaction is constant
and equal to 0.5.

2 Bending Rigidities of Okubo and Recalculation of
the Second Approximation

Okubo presents two approximations of the plate deflection, Eq.
�9� in Ref. �2� �which is identical to Eq. �5� in this work�; the first
approximation comprises the particular solution only and the sec-
ond includes also the first term of the homogeneous solution se-
ries. Okubo presents, however, just his results and he does not
report any bending rigidities for the oak plate material, cut parallel
to the grain, he is considering. On the other hand, the value of the
roots k1,2

2 of the characteristic equation �3� in Ref. �2� �equivalent
to Eq. �4� here�, are given. The four unknown bending rigidities
can, however, be found by solving an equation system consisting
of the four Eqs. �10� in Ref. �2�, the first two of Eq. �12� in Ref.
�2� and the expression for the residual bending moment pertaining
to the particular solution in Ref. �2�. The constants Ci, i
=1, . . . ,6, �C1=0.000768, . . . � are in this case considered as given
and the bending rigidities as unknowns. The solution of the equa-
tion system is

D1 = 8.605 D2 = 4.366 D3 = 50.587 �A7�

D4 = 13.00 �force � length� �A7�
in unknown units. These bending rigidities yield in turn

k1,2
2 = 0.3428 � 0.2279i �A8�

in accordance with the values of k1,2
2 given by Okubo. Therefore,

we assume that the calculated bending rigidities are accurate. To
allow comparison with other materials, SI units have been as-

sumed for the bending rigidities of this material, Table 2.
From the roots k1,2

2 , the constants a� and a� can be calculated
from Eq. �5� in Ref. �2� and the associated boundary conditions.
By using Okubo’s second approximation �C1=0.000738, . . . �, we
can once again calculate bending rigidities with an equation sys-
tem based on Eqs. �10� in Ref. �2� and in this case the first three of
Eq. �12� in Ref. �2�, in which also the given complex constants A2
and B2 are used in two of the equations. In this case, however, the
values of the bending rigidities obtained above are not repro-
duced, the differences for corresponding rigidities being 3–15%.

Note that the correspondence between bending rigidities
and solution constants is exact and one to one in both cases
considered.

In view of the discrepancy between the two solutions, a new
solution for the second approximation has been calculated using
the bending rigidities obtained in the first case. The result is

C1 = 0.000720 C3 = 0.000543 C5 = − 0.003021

C2 = 0.001386 C4 = − 0.003180 C6 = 0.002454

A2 = − 0.0000839 + 0.0000181i

B2 = − 0.0000839 − 0.0000181i �A9�
The greatest differences in comparison with Okubo’s second ap-
proximation occur in the complex constants. Here, the real and the
imaginary parts differ some 5% and 6%, respectively. With the
exception of C1, for which the difference is some 2.5%, the dif-
ference of the remaining real-valued constants is less than 1%.

The residual bending moment at the edge is found to be M�

=−0.00211 cos 6�, which is 6% greater than in Ref. �2�. At the
center of the plate, the bending moments are M�= �0.2070
−0.1247 cos 2��q and M��=−0.1247q sin 2� which, oddly
enough, coincide with Okubo’s results.
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Angular Velocity Estimation From
the Angular Acceleration Matrix
Computing the angular velocity � from the angular acceleration matrix is a nonlinear
problem that arises when one wants to estimate the three-dimensional angular velocity of
a rigid-body from point-acceleration measurements. In this paper, two new methods are
proposed, which compute estimates of the angular velocity from the symmetric part WS of
the angular acceleration matrix. The first method uses a change of coordinate frame of
WS prior to performing the square-root operations. The new coordinate frame is an
optimal representation of WS with respect to the overall error amplification. In the
second method, the eigenvector spanning the null space of WS is estimated. As � lies in
this space, and because its magnitude is proportional to the absolute value of the trace of
WS, it is a simple matter to obtain �. A simulation shows that, for this example, the
proposed methods are more accurate than those existing methods that use only centrip-
etal acceleration measurements. Moreover, their errors are comparable to other existing
methods that combine tangential and centripetal acceleration measurements. In addition,
errors of 2.15% in the accelerometer measurements result in errors of approximately 3%
in the angular-velocity estimates. This shows that accelerometers are competitive with
angular-rate sensors for motions of the type of the simulated example, provided that
position and orientation errors of the accelerometers are accounted for.
�DOI: 10.1115/1.2775495�

Keywords: accelerometer, inertial measurement unit, kinematics, projectile guidance,
angular velocity

1 Introduction
1The angular acceleration matrix �1� W�R3�3 is composed of

a skew-symmetric and a symmetric part, which are the cross-
product matrix �CPM� of the rigid-body angular acceleration and
the square of the CPM of the angular velocity squared, respec-
tively. Let A and B be two points of a rigid body, with position
vectors pA and pB, respectively. From the rigid-body equations,
the acceleration p̈B of point B can be computed from the accel-
eration p̈A of point A as

p̈B = p̈A + W�pB − pA� �1�

where W=�̇+�2, and ��CPM��� is the CPM of the rigid-
body angular velocity �. Now, extracting � from matrix W is a
problem that arises when trying to estimate the rigid-body angular
motion from point-acceleration measurements. In short, this
method consists in measuring the accelerations of several points
on the rigid-body using accelerometers. Assuming that the posi-
tions of these points are known, one can then form a set of linear
equations from Eq. �1�. The ensuing linear system contains as
many equations as there are uniaxial accelerometers attached to
the rigid body. Hence, it is necessary that the number of acceler-
ometers be greater than or equal to 9 in order to solve for the nine
unknowns, namely, the entries of W. One can then extract the
angular acceleration and the angular velocity vectors from the
angular acceleration matrix.

The foregoing approach for angular-velocity estimation is a
crosscurrent when compared with the customary triad of mutually
orthogonal angular-rate sensors �gyroscopes�, which provide di-
rect estimates of the angular velocity. The advantages that
accelerometer-only inertial measurement units �IMUs� could bring

about come from the relative simplicity of accelerometers. In gen-
eral, accelerometers are more reliable, less expensive, and require
less power than angular-rate sensors.

Motivated by the above observations, several proofs of concept
have been attempted. Peng and Golnaraghi �2� tested a cubic
accelerometer-only IMU with an edge of one foot that was in-
tended to measure the angular velocity of a car. Ang et al. �3�, who
used an all-accelerometer concept to control the vibrations of a
hand-held microsurgical instrument, claimed that their solution
was better than an angular sensor-based IMU. Algrain and Quinn
�4� used accelerometers to stabilize the line of sight of an imaging
device. Among the most interesting applications, we find the
works by Chou and Sinha �5�, Mital and King �6�, Nusholtz �7�,
and Shea and Viano �8�, who successfully used accelerometers to
track the angular acceleration and angular velocity of the head of
a dummy subjected to impact. Finally, the targeted application in
this paper is the control of projectile trajectories. Indeed, long-
range projectiles undergo an aerodynamic jump after launch,
which contributes to their scattering. To cope with this problem,
interesting all-accelerometer solutions were proposed in several
papers from Pickel �9�, Pamadi et al. �10�, and Costello �11�, to
name a few. Apparently, from the literature, most of the successful
implementations of accelerometer-only IMUs were done in high
angular-rate applications. Therefore, we will demonstrate the va-
lidity of the progress done here by roughly simulating the trajec-
tory of a brick spinning freely in space with an initial angular
velocity of 10� rad /s.

Theoretical advances were reported in the field of
accelerometer-only IMUs. Among them, we can cite the extensive
works by Grammatikos �12�, Schuler �13�, Mostov �14�, and Parsa
�15�. From their work, we may draw three groups of methods for
the estimation of the angular velocity from point-acceleration
measurements.

1.1 Tangential Acceleration Methods. The first group of
methods uses the time integration of the angular acceleration,
which is obtained, in turn, from tangential acceleration �TA� mea-
surements. Hence, we label it, for short, the group of TA methods.

1CPM�v� is defined as ��v�x� /�x, for any x ,v�R3.
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In this group, � is estimated from the skew-symmetric component
of W, which can be summarized symbolically as

�6 = vect�Ŵ�
�2�

�̂�t� =�
0

t

�6 ���d�

where �6 is the axial vector2 of Ŵ, and �·�ˆ is an estimate of �·�.
Several specific methods may be drawn from Eq. �2� by changing
the numerical integration method, but, apart from that, the algo-
rithm being linear, it is hard to imagine that there will be not more
room for improvements. Hence, for the sake of conciseness, we
choose to use only one integration method, namely, the trapezoi-
dal rule. We will refer to this method by the acronym TA, indis-
criminately from its group.

1.2 Centripetal Acceleration Methods. The second group
includes all methods that consist in taking the square root of the
centripetal acceleration �CA� that is represented by the symmetric
component WS of W. This group will therefore be referred to as
the CA methods. In this category, the customary approach is to
combine linearly the diagonal terms of W in order to obtain the
squares of the components of �. The ensuing square-root opera-
tion yields the absolute values of the components of �. One must
thus cope with the sign ambiguity. Schuler �13� and Grammatikos
�12� suggested that low-cost extra sensors be added to resolve the
sign ambiguity. Another solution, proposed by Parsa �15�, and
which seems more reasonable to the authors, is to simply use the
signs of the TA estimate. As a result, we obtain

�̂�t� = ��0� +�
0

t

�6 ���d�

�̂i = ŵi,i − �1/2�tr�Ŵ� i = 1,2,3 �3�

�̃i = sgn��̂i�u��̂i���̂i i = 1,2,3

where ŵi,j is the �i , j� entry of ŴS, sgn�·� is the signum function,

u�·� is the Heaviside �step� function, and �·�˜ stands for the estimate
of �·� obtained from CA measurements. As it uses only the diag-
onal entries of W, this estimation algorithm will be referred to as
the CAD method.

An alternative method, which also pertains to the CA category,
was reported by Peng and Golnaraghi �2�, where the authors none-
theless point out that this algorithm is prone to singularity prob-
lems. This approach uses the off-diagonal entries of WS to esti-
mate the square of the components of the angular velocity. For
that reason, we choose the label CAOD for this method. The sign
ambiguity may be resolved by resorting, again, to the TA estimate
of the angular velocity. This yields the algorithm

�̂�t� = ��0� +�
0

t

�6 ���d�

�̂i = ŵi,jŵk,i/ŵj,k �4�

�̃i = sgn��̂i�u��̂i���̂i i, j,k = 1,2,3 i � j � k

where one notes that �i becomes undetermined whenever wj,k=0,
that is, when � j =0 or �k=0. In fact, these last equalities imply
also that wi,j or wi,k be null, respectively. Hence, whenever any of
the components of � goes to zero, the other two components
experience indeterminacies of the type 0 /0, thereby rendering the

algorithm unstable. This problem may be circumvented or attenu-
ated by resorting to a different estimation method over certain
ranges of angular velocity.

1.3 Tangential and Centripetal Acceleration Methods. A
third group of estimation methods may be identified by observing
that the TA and the CA methods can be combined in order to
provide more robust angular-velocity estimates. Let us call it the
group of tangential and centripetal acceleration �TCA� methods.
Obviously, the existing CA methods detailed above make use of
the TA method, but since it is only for the purpose of determining
the signs of the angular-velocity components, we will not include
them in the TCA category. Indeed, it is reasonable to think that
only a small piece of the information contained in the TA estimate
is used in the CA methods and that, therefore, their recombination
with the TA estimate may yield more accurate results. Accord-
ingly, all methods that use both the skew-symmetric and the sym-
metric component of W, the former being used to change not only
the signs of the square roots of the latter but also their magnitudes,
will be considered as pertaining to the TCA group.

A first member of this group, which was proposed by Peng and
Golnaraghi �2�, will be called the TCAQ method, where the letter
Q stands for quadratic. Indeed, these authors remarked that the
quadratic equations

�̃i
2 + �̃i�̂ j + �1/2�tr�Ŵ� − ŵi,i − ŵi,j = 0 i, j = 1,2,3 i � j

�5�

hold whenever the estimates are accurate. Angular velocity esti-
mates may then be computed as

�̂�t� = ��0� +�
0

t

�6 ���d�

�̂i,j = �̂ j
2 + 4ŵi,i + 4ŵi,j − 2 tr�Ŵ� �6�

�̃i = − �1/2��̂ j + �1/2�sgn�2�̂i + �̂ j�u��̂i,j���̂i,j i, j = 1,2,3 i � j

where it is apparent that two possible values of j exist for a given
i and, therefore, two estimates of �i are available. In the subse-
quent simulations, we choose the estimate that corresponds to the
maximum value of �̂i,j.

A second method, which was proposed by Parsa et al. �16�, falls
within the TCA category. The authors define a function f mapping
the angular velocity onto the six-dimensional array w of the dis-
tinct entries of WS, that is,

f��� � �− �2
2 − �3

2 − �3
2 − �1

2 − �1
2

− �2
2 �1�2 �2�3 �3�1�T

= �w1,1 w2,2 w3,3 w1,2 w2,3 w3,1�T

� w �7�

Note that f is neither injective nor surjective and, hence, it is not
invertible. Nevertheless, one may still compute its gradient, which
allows for its Taylor series expansion:

f��� = f��̂� +
�f���
��

�� + O�2� �8�

where �� will be the correction on the angular velocity estimate
�̂ obtained from the TA method and where the gradient can be
verified to be

�f���
��

= � 0 − 2�1 − 2�1 �2 0 �3

− 2�2 0 − 2�2 �1 �3 0

− 2�3 − 2�3 0 0 �2 �1
	

T

�9�

One may also verify that �f��� /�� is of rank 3 if and only if

�
2�0, which allows the computation of its left Moore–Penrose

2The axial vector vect�A� of matrix A�R3�3 is defined such that vect�A��u
= �1 /2��A−AT�u, for any vector u�R3.
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inverse ��f��� /���†. Upon estimating the left-hand side of Eq.

�8� from ŴS and using �̂ to estimate the gradient of f, we obtain

�� = ���f���/�����=�̂
† �ŵ − f��̂�� �10�

The resulting estimate �̃ is computed as

�̃ = �̂ + �� �11�
We label this method TCAT, were T stands for Taylor series.

Another method was proposed by Krishnan �17� and by Schuler
�13� to estimate the angular velocity of a rigid body from point-
acceleration measurements. In this method, the accelerometers are
mounted onto rotating disks and, hence, follow the exact same
principle as most mechanical angular-rate sensors do, namely, by
measuring the Coriolis acceleration. As this strategy is rather cum-
bersome and, strictly speaking, does not fall into the category of
rigid-body motion, we will leave it aside in this paper. We also
acknowledge the recent works of Genin et al. �18� and Parsa �15�,
who investigated the general problem of accelerometer placement
for a rigid body moving in space, and the work of Williams and
Fyfe �19�, who studied the same problem for planar motion.

The aim of this paper is to provide new methods to estimate the
angular velocity from the angular acceleration matrix that are
implementable in real time. Two new methods are first devised
and then compared with the existing TA, CA, and TCA methods
through a simple simulation.

2 First Method: Expressing W in a Preferred Frame
One of the major drawbacks of the CA method is that, due to

the square-root operation, the error amplification is unbounded
when any component of the angular velocity approaches zero.
This can be seen by computing the partial derivative of the three-
dimensional array � containing the squares of the components of
� with respect to w��diag�W�, where diag�·� returns the vector
formed by the diagonal entries of �·�. This gives

��

�w�
= 2�

��

�w�
= �1

2
B where � � ��1 0 0

0 �2 0

0 0 �3
	 and

�12�

B � � 1 − 1 − 1

− 1 1 − 1

− 1 − 1 1
	

From now on, we will refer to matrix �� /�w� of Eq. �12� as the
Jacobian matrix of the CA method. Indeed, this matrix gives, for a
given estimation method, the sensitivity of the angular-velocity
estimate to the diagonal entries of the angular acceleration matrix.
From Eq. �12�, we also see that when � becomes singular, the CA
Jacobian matrix is undetermined. This situation is to be avoided at
all costs, as it means that a small error in w� leads to unpredict-
ably large errors in �. On the other hand, from mere intuition, the
best situation may be when � is “farthest” from being singular,
that is, when it is isotropic. This happens when all the absolute
values of the components of � are identical. In such a case, upon
noting that W is a tensor, we may be able to express it in a frame
C different from the body frame B, in order to minimize the error
amplification. Hence, we label this method CAC, the last C stand-
ing for the preferred computational frame C.

2.1 Optimization Problem. To substantiate this claim, we
first need to formulate the problem. Equation �12� is still valid in
frame C. We rewrite this equation as

���C���/�w��C = �1/4�B �13�

where �·�C means that �·� is expressed in frame C. Hence, we aim
at minimizing the p-norm of the Jacobian matrix of the CA
method, that is,

fp � �� ��

�w�
�

C
�

p

→ min
C

�14�

C being free of any constraint. The Euclidean norm, which corre-
sponds to p=2, is chosen here because, due to its invariance, it is
a common metric in vector spaces. Note that the Frobenius norm
is also frame invariant. However, it does not bound any ratio of
norms of the input and output vectors, and, therefore, it is mean-
ingless for our application.

The optimum frame C under which f is minimum is found to be
any frame for which we have

���C = 
�
2u� �15�

where u�= �1 /�3��	1 	1 	1�T. Because the proof of this state-
ment is lengthy, it is relegated to the Appendix. Also found in the
Appendix are proofs that choosing the 1- or the 
-norms, which
correspond to p=1 and p=
, respectively, leads to the same op-
timum frame C.

2.2 Implementation. Let us first use �̂, obtained through the
TA method, to compute an estimate û���̂ / 
�̂
2 of the direction
of the angular velocity. Thus, we need to find a frame C such that
�û��C=u�

* = �u�
* �B, where u�

* ��1 /�3��1 1 1�T. One solution to
this problem can be found by performing a rotation around axis A
orthogonal to û� and u�

* by an angle �C, as shown in Fig. 1. Thus,
we obtain �û��B=QC�u�

* �B=QC�û��C. Apparently, QC is a matrix
rotating frame B into frame C. Hence �1�,

QC = eCeC
T + cos �C�13�3 − eCeC

T� + sin �CEC �16�

where eC is the unit vector giving the direction of A, and EC
�CPM�eC�. Upon noting that eC sin �C=u�

* � û� and cos �C
= û�

T u�
* , Eq. �16� is rewritten as

QC =
�u�

* � û���u�
* � û��T

1 + û�
T u�

* + û�
T u�

* 13�3 + CPM�u�
* � û��

�17�

where it is assumed that û�
T u�

* �−1. In fact, û�
T u�

* =−1 implies
that û�=−u�

* , which is also an optimum orientation. In this case,
it is not necessary to change the coordinate frame, and hence, we
choose QC=13�3. Hence, the algorithm is
if tr�W��0 and 
�̂
2�0

û�=�̂ / 
�̂
2
if û�

T u�
* �−1

QC= �u�
* � û���u�

* � û��T / �1+ û�
T u�

* �+ û�
T u�

* 13�3

+CPM�u�
* � û��

else
QC=13�3

end
�W�C=QC

TWQC
�w��C=diag��W�C�
���C= �1 /2�B�w��C
for i=1,2 ,3

Fig. 1 Rotating u�
* onto û�
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��i�C=�h���i�C���i�C
end
�=QC���C
else

�=03
end

3 Second Method: Computing the Null Space of WS

The idea behind this method is to use the invariants of WS

instead of expressing it in an optimum frame. When neglecting the
measurement errors, we have WS=�2, a symmetric negative-
semidefinite matrix. The eigenvalues of �2 are found to be ��1

=0,�2=−
�
2
2 ,�3=−
�
2

2�, its eigenvectors being, respectively,

��1 = u�,�2 = �1/��1
2 + �2

2��− �2 �1 0�T,

�3 = �1/��1
2 + �3

2��− �3 0 �1�T�

No information concerning the orientation of � can be extracted
from the eigenvalues: only 
�
2 is available. In fact, although it
was never explicitly stated, this information was already present
in the CA method, in the relation

− �1/2�tr�W� = − �1/2�tr�WS� = − �1/2���1 + �2 + �3� = 
�
2
2

�18�
The novelty of this approach lies in the information extracted
from the eigenvectors of �2. As �2 is symmetric, and provided
that 
�
2�0, its eigenvectors are bound to be mutually orthogo-
nal, and, since its rank is 2, two of these eigenvectors span its
range, while the remaining one, linearly dependent on �, spans
the null space of � and, hence, of �2. Therefore, finding �1 for a
given WS gives us the direction of �. Because the problem is
essentially that of estimating the null space of �2, we refer to the
ensuing algorithm as the CANS method.

3.1 Implementation. We will rely on the QR decomposition
to compute the null space of interest in a predetermined number of
steps.3 Let us use Householder reflections �20� to decompose WS

into QR, where R is an upper-triangular matrix and Q is an or-
thogonal matrix. Moreover, as W has one null eigenvalue, it has a
rank of 2, which implies that the third diagonal entry of R will be
null. This also indicates that the Householder method requires
only two reflections; as a result, Q is bound to be proper orthogo-
nal, thus representing a rotation. We thus have

03 = WS�1 = �WS�T�1 = RTQT�1 = RT� �19�

where ��QT�1. From Eq. �19�, we see that � must lie in the null
space of RT. Because the third column of RT is null, we conclude
directly that �=e3 is a suitable solution. The eigenvector is ob-
tained from the definition of �, that is, �1=Q�=q3, where q3 is
the vector formed from the third column of Q.

There is still one issue that needs to be resolved: we have ob-
tained a vector that is parallel to �, but we do not know whether
it points in the correct direction. To fix this, we use the estimate �̂
obtained from the TA method and take the direction that mini-
mizes the magnitude of the error 
�−�̂
2. As a result, � is com-
puted as �=sgn��1

T�̂�
�
2�1. Thus, the algorithm takes the form
if tr�W�0


�
2=�−�1 /2�tr�W�
WS= �1 /2��W+WT�
�Q ,R�←Householder�WS�
�=sgn�q3

T�̂�
�
2q3

else
�=03

end

4 Simulation
In order to compare the robustness of the two foregoing meth-

ods with that of the previously proposed ones, the motion of a
brick freely rotating in space was simulated. As the current objec-
tive is to compare different algorithms for the estimation of �, the
simulations were simplified to the minimum.

4.1 Accelerometer-Only Inertial Measurement Unit. The
IMU used to estimate the angular velocity of the brick is assumed
to be constituted of four triplets of mutually orthogonal acceler-
ometers, attached to four of the vertices of the parallelepiped. The
layout is depicted in Fig. 2, where unit vector ai gives the sensi-
tive direction of the ith accelerometer, whereas point Pi gives its
location on the brick. Apparently, all direction vectors are parallel
to four of the parallelepiped edges; moreover, P1= P2= P3, P4
= P5= P6, P7= P8= P9, and P10= P11= P12. The brick dimensions
are chosen to be a=0.15 m, b=0.2 m, and c=0.25 m in the X-,
Y-, and Z-axis directions, respectively. Let us also define frame B,
which is attached to the brick and has its origin B located at the
brick centroid. All vector quantities in this simulation are to be
expressed in frame B.

4.2 Trajectory. We assume that neither force nor moment is
applied to the brick throughout the simulation. Hence, the angular
momentum is preserved, which gives

IB�̇ + � � IB� = 03 �20�

where IB is the brick inertia matrix calculated with respect to point
B and expressed in frame B. Upon assuming a constant density �
of the brick material, we obtain

IB =
�abc

12 �b2 + c2 0 0

0 a2 + c2 0

0 0 a2 + b2 	 = ��64.1 0 0

0 53.1 0

0 0 39.1
	

� 10−6 m5 �21�
Notice that, under these assumptions, the brick trajectory is inde-
pendent of �. We choose the initial condition to be �0
= �13.33 17.77 22.21�T rad /s, as represented in Fig. 2, where one
can see that this vector is parallel to one of the great diagonals of
the parallelepiped, its magnitude being 10� rad /s.

4.3 Accelerometer Readouts. The ith accelerometer output is
decomposed into one deterministic part ai,r, which is the actual
point acceleration, and two stochastic parts �ai,b and �ai,n, which
are the bias error and the noise error, respectively. This gives, at
an instant t,

ai�t� = ai,r�t� + �ai,b + �ai,n�t� �22�
In the above equation, the bias error is assumed to be time inde-
pendent and normally distributed, while the noise is assumed to be
white and normally distributed as well. The mean and variance of

3It is common practice to find the null space of a matrix using the singular-value
decomposition �SVD�. However, algorithms that perform SVD are iterative, which is
undesirable for angular-velocity estimation in real time, even for a relatively small
matrix. Fig. 2 A brick rotating freely in space
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�ai,b are taken to be 0 and 300 mg, respectively, while the mean
and variance of �ai,n are taken to be 0 and 75 mg, respectively.
Note that a bias error of 300 mg corresponds to approximately 2%
of the required range of the device. All random variables are as-
sumed to be independent. A sampling rate of 100 Hz is assumed.
In order to keep the simulation simple, no sensor orientation or
position errors are included. Hence, the results obtained here serve
as comparison among the different estimation methods.

4.4 Results. The estimated angular acceleration is shown in
Fig. 3. Upon integrating the angular acceleration according to Eq.
�2�, we obtain the TA estimates of Fig. 4. As expected, these
estimates drift constantly over time due to bias errors, which ren-
ders them useless for applications involving IMU autonomy of
more than 1 s.

The estimates obtained from the existing and the proposed CA
methods appear in Figs. 5 and 6, respectively. The CAD method
exhibits discontinuities whenever one of the components ap-
proaches zero to the point that sign errors are introduced in the
estimates. The same problem occurs with more amplitude in the
CAOD method. Apparently, in this situation, the proposed CA
methods are more robust than the existing ones, as can be seen
from Fig. 6. Moreover, the CAC and the CANS behave well even
when some of the components of the angular-velocity vector are
close to zero.

On the other hand, from Fig. 7, it is hard to discriminate the
accuracy of the TCA methods from that of the proposed CA meth-
ods. One may notice, however, slight discontinuities in the TCAQ
estimates. In order to better compare the proposed CA methods

with the existing TCA methods, the errors on the angular-velocity
estimates are traced in Figs. 8–10. Due to the instability problems
when a component approaches zero, the CAD and CAOD meth-
ods turn out to be much less accurate than the other ones. Appar-
ently, the CAC, CANS, and the TCAT methods are comparable,
whereas the TCAQ method proves to be slightly less robust in this

Fig. 3 Angular acceleration estimates

Fig. 4 Angular-velocity estimates from the existing TA method

Fig. 5 Angular-velocity estimates from the existing CA
methods

Fig. 6 Angular-velocity estimates from the proposed CA
methods

Fig. 7 Angular-velocity estimates from the existing TCA
methods
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situation. In fact, from Eq. �6�, one may notice that this last
method is close to being singular whenever one of the pairs of
equations

2�i � − � j � − �k i, j,k = 1,2,3 i � j � k �23�
is satisfied, as its associated discriminant approaches zero. Appar-
ently, from Fig. 10, the recorded error peaks in the TCAQ esti-
mates correspond to such situations.

In summary, we see that the errors on the CA estimates of the
angular velocity are stable over time, unlike the errors on the TA
estimates. The Euclidean norms of the errors from the four most
accurate methods in this simulation are displayed in Fig. 11. The
performance of a method may be assessed by taking the rms
value of the magnitude of its associated error, which gives,
symbolically,

��rms =�1

n�
i=1

n


�̂i − �i
2
2 �24�

where �i is the true angular velocity at the ith measurement, �̂i is
its estimate, and n is the number of samples considered. The rms
values resulting from the foregoing simulation are gathered in
Table 1, along with their associated computational costs at each
time-step. Because of the unstable nature of the TA method, its
drift rate is given instead of its error norm rms value.

Sign errors render the CAD and CAOD methods unreliable
whenever one of the angular-velocity components reaches zero,
and, for that reason, their rms values are significantly higher than
those of the other methods. It may be possible to reduce these
errors by resorting to TA or TCA methods in the time intervals
over which the estimates are prone to instabilities. However, this
option is hard to justify, since it requires the evaluation of such an
interval, and even harder when seeing that other CA methods
circumvent that problem—except, of course, when all the angular-
velocity components reach zero. We must state, however, that the
CAD and CAOD methods are computationally less intensive than
the CAC and the CANS.

On the other hand, it is hard to clearly discriminate the TCA
methods and the proposed CA methods, as their performances are
comparable in this simulation. To the advantage of the proposed
CA methods, we may recall that they do not make use of all the
information available in the angular acceleration matrix in that
they use only its skew-symmetric component to estimate the signs

Fig. 8 Errors on the angular-velocity estimates

Fig. 9 Errors on the angular-velocity estimates

Fig. 10 Errors on the angular-velocity estimates

Fig. 11 Norms of the errors on the angular-velocity estimates

Table 1 Error and cost comparison

Method ��rms Flops Square roots

TA 30.2 rad /s2 9 0
CAD 27.2 rad /s 18 3
CAOD 16.2 rad /s 21 3
CAC 0.547 rad /s 141 5
CANS 0.889 rad /s 114 3
TCAQ 1.4 rad /s 69 3
TCAT 0.625 rad /s 322 3
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of the angular-velocity estimates. Hence, it is allowed to think that
further recombination of the CAC and the CANS estimates with
the TA estimate may improve the robustness of these methods.

5 Conclusions
Two new methods for estimating the angular velocity of a rigid

body from its angular acceleration matrix were proposed. Simula-
tion from noisy accelerometer signals showed that the new meth-
ods were more reliable, in the case studied, than the existing CA
methods. Moreover, their accuracy was comparable to those of the
TCA methods that combine TA and CA measurements.

Note also that the rms value of accelerometer bias errors that
we introduced here account for 2.15% of the maximum point
acceleration to be measured. On the other hand, the rms values of
the errors on the most accurate angular-velocity estimates are ap-
proximately 3% of the maximum angular velocity. This shows
that accelerometer-only strapdown IMUs have the potential of be-
ing competitive with their angular sensor-based counterparts for
such a type of motion, provided that the sensors are accurately
positioned.4

Moreover, the authors believe that there is still room for the
improvement of these algorithms. Indeed, the TA and the CA
methods have complementary advantages and disadvantages.
Combining them correctly may result in the significant reduction
of the rms error, without counting on possible advances in accel-
erometer technology. Note also that military applications are not
the only beneficiaries of such improvements. In fact, any high
angular speed guided rigid body could use such a system. Motion
tracking of a dummy after impact is another application of these
methods, but there are many more in biomechanics.

Appendix
In this section, we compute the global minima of the objective

function f as defined in Eq. �14�. For starters, let us exclude the
situation where �=03, in which case changing frame does not
improve anything. Furthermore, as we are to find the frames that
minimize the overall error sensitivity, we can readily discard the
worst ones, that is, the frames for which the error sensitivity is
unbounded. As stated previously, in these frames, at least one of
the angular-velocity components is null. From this last assump-
tion, � is nonsingular over the selected optimization domain, and
we can write

���/�w��C = �1/4���−1�CB �A1�

1 Minimizing f2

As the Euclidean norm of � is invariant, we can further sim-
plify the problem by defining D�� / 
��2, where

D � �u�,1 0 0

0 u�,2 0

0 0 u�,3
	 and u� � �u�,1

u�,2

u�,3
	 � �/
�
2 �A2�

is the unit vector pointing in the same direction as �. Thus, Eq.
�13� can be rewritten as

4
�
2�D�C���/�w��C = B = U�VT �A3�
where

U � � 0 − �2/3 − 1/�3

− 1/�2 1/�6 − 1/�3

1/�2 1/�6 − 1/�3
	 � � �2 0 0

0 2 0

0 0 1
	

and

V � � 0 − �2/3 1/�3

− 1/�2 1/�6 1/�3

1/�2 1/�6 1/�3
	

is the singular-value decomposition of B. Note that � can be
further decomposed into �= �2�13�3−e3e3

T, where ei�R3 has all
its components null except for the ith component, which is 1. We
perform the foregoing substitution, solve for the Jacobian matrix,
and take its Euclidean norm, which yield

4
�
2
���/�w��C
2 = 
�D�C
−1U�213�3 − e3e3

T�VT
2 �A4�

As the matrix Euclidean norm is invariant under rotations, we can
write

4
�
2f2 = 
�D�C
−1U�213�3 − e3e3

T�UT
2 = 
�D�C
−1�213�3 − u3u3

T�
2

�A5�

where u3�−�1 /�3��1 1 1�T is the third column vector of U.
Upon defining the orthogonal projector Pu,3�13�3−u3u3

T onto the
plane normal to u3, we obtain

4
�
2f2 = 
�D�C
−1�13�3 + Pu,3�
2 �A6�

The strategy is now to define a lower bound for the objective
function which, if it is inclusive, will prove to be a global mini-
mum of f2. Hence, by comparing with Eq. �A6�, one can readily
verify that

4
�
2f2 � 
�D�C
−1�2Pu,3�
2 = 2 max


x
2=1

�D�C

−1Pu,3x
2 �A7�

The product Pu,3x subject to the constraint 
x
2=1 can be viewed
as a mapping taking the unit sphere onto the unit disk D centered
at the origin and lying in the plane P normal to u3. Furthermore,
the action of the diagonal matrix �D�C on D can be viewed as a
scaling along the three orthogonal directions �ei�i=1

3 corresponding
to the three diagonal entries of �D�C, respectively. It is now appar-
ent that a matrix �D�C that minimizes the lower bound is one of
the isotropic solutions, that is, �D�C

−1=�313�3. Indeed, any attempt
to reduce the ith component of �D�C results in an augmentation of
at least one of the other components through the relation 
u�
2

2

=1, thereby increasing the radius of the circle in a direction or-
thogonal to ei. Hence, the lower bound minimum is attained when
the circle is scaled uniformly in all directions, which corresponds
to a lower bound value of 2�3. On the other hand, upon substi-
tuting the foregoing value of �D�C into Eq. �A6�, we obtain

4
�
2f2 = �3
13�3 + Pu,3
2 = 2�3 �A8�

which is the same result as for the lower bound. Hence, �D�C
−1

=�313�3, or, equivalently, u�=u�
* ��1 /�3��1 1 1�T, corresponds

to a global minimum of the objective function f2. In fact, one can
readily verify that any of the vectors

u� = �1/�3��	1 	 1 	 1�T �A9�

also corresponds to a global minimum of f2.

2 Minimizing f1

Upon choosing p=1 in Eq. �14�, we obtain

f1 = �� ��

�w�
�

C
�

1
=


�D−1�CB
1

4
�
2
→ min

C
f1 �A10�

Let us rewrite this minimization problem in terms of u� as defined
in Eq. �15�, which requires the addition of a constraint equation.
After simplification, this yields

4Note that gyroscopes are also subjected to misalignments, but not to position
errors.
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f1 =
1

4
�
2
�

i=1,2,3

1

�u�,i�
→ min

u�

f1

�A11�
g�u�� = 
u�
2

2 − 1 = 0

Let us consider the objective function over the first octant of the
Cartesian space only, over which it is continuous. This yields the
optimization problem

f1 =
1

4
�
2
�

i=1,2,3

1

u�,i
→ min

u��03

f1

g�u�� = 
u�
2
2 − 1 = 0 �A12�

which allows a solution by the Lagrange multipliers method. Ac-
cordingly, we write

�f1 + � � g =
− 1

4
�
2
2 �1/u�,1

2 1/u�,2
2 1/u�,3

2 �T + 2�u� = 03

�A13�

where � is the Lagrange multiplier. We obtain

− 1/�4
�
2
2u�,i

2 � + 2�u�,i = 0 or u�,i = 1/�2�3 �� i = 1,2,3

�A14�

which yields �= ��3 /2�3, after substitution of Eq. �A14� in the
constraint equation. The resulting optimum unit vector is u�

= �1 /�3��1 1 1�T. Performing the same analysis over the seven
other octants of the Cartesian space yields the optima

u� = �1/�3��	1 	 1 	 1�T �A15�

which are, apparently, the global minima of f1.

3 Minimizing f�

The objective function obtained from the selection p=
 is

f
 = �� ��

�w�
�

C
�




=

�D−1�CB



4
�
2
→ min

C
f
 �A16�

and is rewritten in terms of u� as

f
 =
3

4
�
2
max

i=1,2,3

1

�ui�
→ min

u�

f


g�u�� = 
u�
2
2 − 1 = 0 �A17�

The solution of this problem by the method of Lagrange multipli-
ers is cumbersome. Indeed, the presence of the maximum function
which experiences discontinuities over the planes u�,i= 	u�,j, i,
j=1,2 ,3, i� j, forces the partition of the space into 24 pseudopy-
ramids having their apex at the origin and their lateral faces within
the planes u�,i=0, u�,j =0, u�,i=u�,k, and u�,j =u�,k, i=1,2 ,3, i
� j�k.

Consider instead the relation

f
 � f1 �A18�
which may be obtained by inspection of Eqs. �A11� and �A17�.
Upon evaluating the two functions at the global minima of f1
given in Eq. �A20�, we obtain

f1�u�� = f
�u�� = �3�3�/�4
�
2
2� �A19�

The inequality �Eq. �A18��, Eq. �A19�, and the fact that both ob-
jective functions are subjected to the same constraint g imply that
the values of the global minima of f
 are the same as those of f1,
namely,

u� = �1/�3��	1 	 1 	 1�T �A20�
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A Strain Gradient Model for
Fracture Prediction in Brittle
Materials
In this paper, we present a new model to predict the fracture in brittle materials from a
geometrical weakness presenting an arbitrary stress concentration. The main idea is to
combine the strain gradient elasticity with a cohesive model that includes both the dis-
placement and the rotation jumps between the cohesive surfaces in the separation law.
Three material parameters were used in the establishment of the fracture criterion. The
first two parameters are the commonly used �c, the ultimate stress, and Gc, the critical
energy release rate. The third parameter is the characteristic length l as in most of the
strain gradient models. The proposed three-parameter model enables to take the different
stress concentration levels into account, thus providing a criterion to predict fractures for
any stress concentration, whether it is singular or not. Experimental results were selected
to verify the accuracy and efficiency of the criterion. It was shown that the proposed
model is physically reasonable, highly accurate, and easy to apply. It can be used in
crack initiation prediction of engineering structures made of brittle materials.
�DOI: 10.1115/1.2775498�

Keywords: Fracture criterion, strain gradient, cohesive model, PMMA, brittle or quasi-
brittle materials, size effect, stress concentration

1 Introduction
Fracture prediction of structures made of brittle materials is an

important issue in engineering designs. In real structures, the fail-
ures are often initiated from a few geometrical weaknesses near
which stress concentrations are formed. The most dangerous geo-
metrical weaknesses, such as the macrocracks, for example, can
usually be avoided with appropriate structure designs. However, it
is difficult to keep away from other geometrical weaknesses such
as holes, notches, etc. The stress concentrations produced near
these geometrical weaknesses, even at a weak level, may consti-
tute a source of crack initiation. In brittle materials, the crack
initiation is often followed by instable crack propagation, thus
leading to the final failure of the structure. In this point of view,
the formation of a main crack in brittle materials is often consid-
ered as the structure failure.

The stress concentrations are of many types and different lev-
els. The failure prediction for all these stress concentrations is an
essential research topic for engineers and scientists since Galileo.
However, it seems that so far, fracture can be accurately predicted
only for few types of stress states. For brittle materials, failure
criteria for two simple situations are commonly accepted.

�1� When a structure is under uniform uniaxial tension, the
maximum tensile stress criterion is used for fracture predic-
tion: fracture occurs when

� � �c �1�

i.e., when the maximum tensile stress attains the ultimate
stress of the material.

�2� When cracks exist in a structure, the criteria based on the
linear fracture mechanics are appropriate to predict the
fracture. The mostly used criterion is that proposed by Grif-

fith on the basis of the energy release rate when new sur-
faces are created during the cracking. The Griffith criterion
predicts the crack growth when

G � Gc �2�

where G and Gc are, respectively, the energy release rate
and its critical fracture value.

When the stress distribution is not uniform but does not present
a singularity, the maximum stress criterion �Eq. �1�� is still used in
many engineering practices. However, it has been shown that in
this case, a single material parameter such as the ultimate tensile
stress is not sufficient to describe the fracture conditions; many
factors such as the stress gradients, the multiaxial stress state, or
the structure size may influence the material strength �Bazant �1��.

When the stress concentration presents a weaker singularity
than a crack one, such a singularity can be found in the cases of
sharp notches, interface cracking, or cracks in ductile materials;
criteria based on the finite fracture mechanics �FFM� were devel-
oped and reported in the literature. In simple words, these criteria
are kinds of combinations of criteria �1� and �2�, using both the
two material parameters �c and Gc in the fracture prediction
�2–6�. Another class of two-parameter fracture criteria are issued
from the so-called cohesive models �7,8�. Li and Zhang �9� have
adapted a large number of these criteria to predict fractures caused
by a nonsingular stress concentration. However, it was shown that
all of them predict too conservative critical loads compared to the
experimental results. In fact, each of these criteria is appropriate
only for a particular stress concentration case for which it was
developed. Its extension to a more general case often induces
important errors. They believed that the two parameters used in
these criteria are not sufficient to describe the fracture process
under arbitrary stress concentrations and a third parameter should
be added in order to better predict brittle fractures. This consider-
ation led them to construct a three-parameter criterion giving
more accurate fracture predictions. Nevertheless, we think that it
will be beneficial to develop physically more reasonable and tech-
nically more practical criteria for this purpose.
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In this paper, we present a fracture model combining a linear
strain gradient formulation and a cohesive zone model. The strain
gradient theory, associated with the couple-stress elasticity, was
initially developed by Toupin �10� and Mindlin and Tiersten �11�.
This theory was successfully applied to simulate the size depen-
dency of the deformation behavior in micron scale in metals
�12–15� and polymers �16,17�. This theory provides a powerful
tool for modeling the material constitutive laws in a microscopic
scale. However, it is still rare in the literature to study the fracture
process by means of the strain gradient theory.

In this work, the establishment of the cohesive model was
based on a conventional separation law by adding to its potential
a variable representing the relative rotation between two cohesive
surfaces. Consequently, the cohesive forces issued from this po-
tential include not only the tensile forces but also the couple stress
between the separated surfaces. This requires the use of the strain
gradient elasticity theory in describing the constitutive law of the
bulk material. The numerical implementation of this fracture
model needs to develop a cohesive finite element including the
relative rotation effect. In practice, the cohesive elements can be
placed at the fracture path between bulk elements. The fracture
model thus built was used to reproduce the experimentation re-
sults obtained by Li and Zhang �9� who carried out uniaxial ten-
sion tests on dogbone shaped polymethyl metacrylate �PMMA�
plates with a central hole. It has been shown that the proposed
model is capable to provide highly accurate fracture predictions
for all the specimens considered, covering a large range of stress
gradient levels.

The organization of this paper is as follows. First, we present
briefly the strain gradient theory used in this work and the con-
struction of the cohesive model. Next, we formulate the finite
elements to model the bulk material and the cohesive zone. After
that, we present the confrontation between the predictions issued
from the proposed model and the test results. Finally, we advance
some discussions on the efficiency of the proposed fracture model
and tried to reveal its physical significances.

2 Theoretical Considerations
In this section, we recall some notions of the strain gradient

elasticity and the couple-stress theory. Then, we establish a cohe-
sive potential that takes both the displacement and the rotation
jumps between the separated surfaces into account. These theoret-
ical considerations form the frame of the fracture model of brittle
materials developed in this work.

2.1 Field Equations for Strain Gradient Elasticity. The
theory of strain gradient elasticity was first developed by Toupin
�10� and Mindlin and Tiersten �11�. Numerous schemes were de-
veloped on the basis of their theory. In one of these schemes, the
solid is taken to be homogeneous and isotropic with an energy
density function W that depends on scalar invariants of the strain
tensor � and the deformation curvature tensor � with

� =
1

2
�u � + �u� �3�

� = �� �4�

where � is the gradient operator, u is the displacement vector, and
� is the rotation vector. Since

� = −
1

2
� � u �5�

the curvature tensor � is issued from the second derivatives of the
displacement vector and can therefore be considered as a strain
gradient tensor. In order to describe the stress state of such a
deformable body, couple-stress theory is invoked to complete the
characterization. The stress quantities that are work conjugate to
these two strain quantities are the symmetric part of the Cauchy
stress � and the asymmetric couple stress m. In fact, let t be the

Cauchy stress tensor, t=�+�, where � is the antisymmetric part
of t and the couple-stress tensor m is related to � by the formula
�1 /2�e ·� ·m=� with e being the permutation tensor. These stress
quantities are related to the strain quantities � and � through the
energy density W as follows:

� =
�W��,��

��
�6�

mT =
�W��,��

��
�7�

For elastic bodies, one of the most used strain energy functions is
written as follows �Yang et al. �18��:

W��,�� =
1

2
��tr ��2 + ���:� + l2�:�� �8�

where � and � are the Lamé constants and l is a length scale
parameter. According to Eqs. �6� and �7�, we obtain the constitu-
tive law of the considered elastic body,

� = ��tr ��I + 2�� �9�

mT = 2�l2� �10�

It is clear that when l=0, Eqs. �9� and �10� are degenerated to the
pure Hooke law.

A principle of virtual work was postulated by Fleck et al. �14�.
Let T j = ��ij +�ij�ni be the traction vector acting on a surface ele-
ment with unit normal n and q j =mijni be the couple stress traction
vector. The principle of virtual work statement for all admissible
variations �u is

�
S

�Ti�ui + qi�mi�dS =�
V

��ij��ij + mij�	ij�dV �11�

The associated equilibrium equations in the absence of body
forces or couples are

� ji,j + � ji,j = 0 �12�

� jk +
1

2
eijkmpi,p = 0 �13�

In plane problems, the only nonzero component in the rotation
vector � is 
3. Therefore, the nonzero components in the defor-
mation curvature tensor � are 	31=�
3 /�x and 	32=�
3 /�x and
the nonzero components in the couple-stress tensor m are m13
=2�l2	31 and m23=2�l2	32.

Fig. 1 Separation laws between cohesive surfaces

021004-2 / Vol. 75, MARCH 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2.2 Cohesive Model With Rotation Jump. Barenblatt �7�
assumed that a cohesive zone exists immediately ahead of the
crack tip. The cohesive forces depend on the separation distance
between the two crack lips. This zone develops progressively as
the remote loading increases before the separation energy pro-
vided by the remote loads overcomes the cohesive energy due to
the cohesive forces. Once this critical state is achieved, the crack
propagation is supposed to occur. This model was successfully
used to predict fractures in different materials due to different
mechanisms �19–22�.

In traditional cohesive models, the cohesive force vector T es-
sentially depends on the separation vector between the two sur-
faces ���. This will change when the strain gradient is taken into

consideration. Within the framework of the above-mentioned
couple-stress theory, the cohesive forces will include the couple-
stress traction vector q due to the relative rotation ��� between the
two separated surfaces. In general, we can define a cohesive po-
tential ����� , ���� such that

T =
��

����
q =

��

����
�14�

In the present work, only the plane problem is considered. If we
assume that the displacement jump in the cohesive zone only oc-
curs in the normal direction of the separated surfaces, the nonzero
quantities in ��� and ��� are ��n� and �
3� that we notice as � and

 for brevity. Thus, we can define a cohesive potential as follows:

� =�
0 for �e � 0

a�max� 1

m + 1
� �e

�max
	m+1

−
1

n + 1
� �e

�max
	n+1
 for 0  �e  �max

a�max� 1

m + 1
−

1

n + 1
	 for �max � �e

� �15�

with �e defined as the effective displacement jump as follows:

�e
2 = �2 + lc

2
2 �16�

where a, m, n, lc, and �max are material constants. In the case
when lc=0, this potential is degenerated to a conventional poten-
tial similar to that of Lennard-Jones �23�.

The dual quantities related to the normal separation and the
relative rotation are the cohesive force T and the couple-stress
traction q. According to Eq. �14�, we obtain, for 0�e�max,

T =
��

��
= a�� �e

�max
	m

− � �e

�max
	n
 �

�e

�17�

q =
��

�

= a�� �e

�max
	m

− � �e

�max
	n
 lc

2


�e

If we define a quantity Te called the effective cohesive force such
that

Te
2 = T2 + � q

lc
	2

= a�� �e

�max
	m

− � �e

�max
	n
 �18�

it is clear that

Te =
��

��e
�19�

2.3 Properties and Identification of the Proposed Cohesive
Model. Even for conventional cohesive models, the identification
of material parameters is not an easy task. Amongst different co-
hesive models, the main difference lies in the shape of the
traction-separation response and the constants used to describe
that shape. The shape of the traction-separation response of the
above-mentioned cohesive model can be adjusted by choosing
different parameters m and n. Figure 1 shows the �e-Te relations
by using different values of m and n. For brittle materials, one
often supposes that the �e-Te relations are essentially linear for
small �e. Once �e reaches a critical value, the effective cohesive
force Te drops dramatically and thus the fracture process exhibits
a brittle aspect. This leads us to choose m=1 with a large n, n
=10, for example. Thus, we rewrite the cohesive potential �Eq.
�15��

� = a�max�1

2
� �e

�max
	2

−
1

n + 1
� �e

�max
	n+1
 �20�

The �e-Te relation is, according to Eq. �19�,

Te =
��

��e
= a� �e

�max
− � �e

�max
	n
 �21�

This relation is also illustrated in Fig. 1. Therefore, we have still
three material parameters a, lc, and �max to determine in this co-
hesive model.

For conventional cohesive models, there is common belief that
these models can be described by two independent parameters
�24,25�. These parameters may be two of three parameters,
namely, the maximum cohesive strength �c, the maximum sepa-
ration distance �max, or the cohesive energy �c, that can be related
to the two precedent parameters. �It is believed that �c is equiva-
lent to the critical energy release rate Gc.� If the gradient of the
separation distance, i.e., the relative rotation, is introduced into a
cohesive model, we have to consider at least three material pa-
rameters. For the potential used in the present work, these material
parameters are a, lc, and �max.

Let us first give an estimation of the value of lc. To this end, we
adopt the hypothesis that the constitutive behavior is essentially
identical for both the bulk material and the material in cohesive
zones, especially in their elastic regime. This hypothesis is justi-
fied by the fact that the nonlinear part of the cohesive potential is
nearly negligible compared to that of the linear part. Therefore,
we can write, for a large range of �,

� � a�max
1

2
� �e

�max
	n

= a
�2 + lc

2
2

2�max
�22�

Consider now a cohesive zone of length dx and of height 2h. The
deformation of this cohesive zone is characterized by an average
separation distance � and an average relative rotation 

=
�h�y /h, as shown in Fig. 2. The nonzero strain components and
their gradients corresponding to this deformation are �22=� /2h
and 	32=�
 /�y=
�h� /h. The other strain components and their
gradients are neglected. Since the cohesive material has the same
constitutive behavior as the bulk material, the total strain energy
stocked in the cohesive zone can be calculated according to Eq.
�8�,
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dW = ��
−h

h �E

2
�22

2 + �l2	32
2 	dy
dx = �E�2

4h
+ 2�l2
2

h
	dx

�23�

Comparing to Eq. �22�, we have �=dW /dx and therefore

a

2�max
=

E

4h

alc
2

2�max
=

2�l2

h
�24�

These equations lead to

lc =
2

1 + �
l �25�

This result shows that the values of lc and l are of the same order.
In the case of �=0.3, we have lc=1.754l.

Now, let us determine the values of the parameters a and �max.
First, according to Eq. �17�, we compute the cohesive tractions

T = a� �e

�max
− � �e

�max
	n
 �

�e

q = a� �e

�max
− � �e

�max
	n
 lc

2


�e
�26�

The critical energy release rate Gc is defined as the work done by
the cohesive forces on a unit cohesive length and during whole the
separation procedure, namely,

Gc = lim
d→0

1

d�0

d��
0

�c

Tnd� +�
0


c

qd
�dx

= lim
d→0

1

d�0

d��
0

�max

Ted�e�dx �27�

This definition leads to

Gc = ���e = �max� = a�max�1

2
−

1

n + 1
	 �28�

It is clear that Gc just represents the area under the �e-Te curve.
On the other hand, we suppose that the effective cohesive traction
Te is limited by the ultimate stress of the material �c, which is
measured by uniform tension tests. Therefore, from Eq. �21�, we
look for the maximal value of Te,

�Te

��e
=

a

�max
�1 − n� �e

�max
	n−1
 = 0 ⇒ �e = �maxn

1/�1−n� �29�

and therefore

Te max = a�n1/�1−n� − nn/�1−n�� = �c �30�

From Eqs. �28� and �30�, we obtain

a =
�c

�n1/�1−n� − nn/�1−n��
�max =

Gc�n1/�1−n� − nn/�1−n��
�c�1/2 − 1/�n + 1��

�31�

Thus, the constants a and �max are related to the material param-
eters �c and Gc. In the case when n=10, we have a=1.435�c and
�max=1.703Gc /�c.

3 Finite Element Modeling
In order to construct a finite element model with strain gradient,

we need to establish two types of elements: the first one is the
bidimensional linear elements with strain gradient and the second
one is a cohesive element with relative rotation between the sepa-
rated surfaces.

3.1 Hybrid Elements for Plane Strain Deformation. The
establishment of the strain gradient element in continuous elastic
solid can be performed by introducing the following variational
principle �26,27�:

��u,�,�� =�
V

W��,��dV +�
V

� ji�ijdV −�
ST

�Ti
0ui + qi

0
i�dS

���u,�,�� = 0 �32�

with

�ij = eijk
k −
1

2
�uj,i − ui,j� �33�

In Eq. �32�, both the displacements ui and the rotations 
i are
considered as independent variables. For a couple-stress solid,
�ij =0 enforces the relationship between rotations 
i and displace-
ments ui. The variational statement �Eq. �32�� is derived through
enforcing �ij =0 in an averaged sense in Eq. �5� by the use of the
Lagrange multipliers �ij, which are the antisymmetric stress com-
ponents. This principle was first used by Herrmann �26� as the
basis for a finite element formulation of couple-stress solids and
later by other authors.

Plane strain elements based on Eq. �32� have as primary depen-
dent variables the displacement components �u1 ,u2� and the rota-
tion 
3 and the antisymmetric component of the stress �=�12=
−�21. Within this framework, we have formulated 6- and 8-noded
elements, see Fig. 3. For these elements, there are three nodal
values at each node, namely, �u1 ,u2 ,
3�, and one constant �
within each element. Therefore, both displacements and rotations
are continuous across elements, but not �. The total degrees of
freedom for an N-node element are thus �3N+1�. These are stan-
dard isoparametric elements, with the same shape functions for u1,
u2, and 
3. The formulation details are omitted here for brevity.

3.2 Cohesive Elements. The cohesive elements can be con-
structed to represent the cohesive model described in Sec. 2.2.
Consider the two solid elements �1 and �2 separated by an in-
finitesimally thin element with surfaces S1 and S2 being the part of
�1 and �2, respectively. Mathematically, we consider surfaces
S1=S2=S in the initial configuration and their corresponding nor-
mal vectors such that n1=n2=n. Thus, we define a 6-node cohe-
sive element with the Nodes 1, 2, and 3 belonging to S1 and the
Nodes 4, 5, and 6 belonging to S2, as illustrated in Fig. 4. The
displacement jump between the two surfaces described in the glo-
bal system is therefore

Fig. 2 A deformed infinitesimal cohesive element
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�u�xy = u+ − u− �34�

where �u�xy = ��u1� �u2� �
3��T is the displacement jump vector be-
tween the displacement vectors u+ and u− on S1 and S2, respec-
tively. In the local coordinate system, we have �u�nt

= ��un� �ut� �
3��T; notice that the tangent displacement jump is
not considered in this work. For brevity and in accordance with
the notation in Sec. 2.2, we notice �u�nt= �� 0 
�T. Between these
two representations of the displacement jump vector, we have the
following relationship:

�u�xy = R�u�nt �35�

with

R = �nx − ny 0

ny nx 0

0 0 1
� �36�

According to the separation law defined in Eq. �26�, the cohesive
traction vector in the local coordinate system can be related to the
displacement jump vector by

Tnt = ��u�nt �37�

with

� = a� 1

�max
− � �e

�max
	1/n 1

�e

�1 0 0

0 �t 0

0 0 lc
2 � �38�

Since �ut�=0, we can prescribe a large value to the term �t. The
cohesive force vector in the global coordinate system can be ob-
tained by applying the coordinate transformation, namely,

Txy = RTnt �39�
Let us now represent the displacements within the cohesive ele-
ment by means of the nodal displacement vector q
= �u1 v1 
1 ¯ u6 v6 
6�T, namely,

�u�xy = Nq �40�

where N is the shape function matrix. For any admissible virtual
displacement field, the virtual work principle states

�Wint = �Wext �41�

where Wint is the work of the internal forces within the cohesive
element, according to Eqs. �35� and �39�,

Wint =�
L

Txy
T �u�xydl =�

L

Tut
T RT�u�xydl =�

L

�u�nt
T �TRT�u�xydl

=�
L

�u�xy
T R−T�TRT�u�xydl = qT��

L

NTR�TRTNdl
q

�42�

Wext is the work of the external forces. Let F be the external force
vector applied on the nodes of the element; we can write

Wext = qTF �43�
Therefore, the virtual work principle leads to

Kq = F �44�
where

K =�
L

NTR−T�TRTNdl �45�

is the rigidity matrix of the cohesive element. It is clear that this
rigidity matrix is not a constant matrix; thus, a nonlinear system
has to be resolved by using iterative procedures.

4 Verification of the Model by Experimental Results
In this section, we will verify the proposed strain gradient co-

hesive model by using the experimental results obtained by Li and
Zhang �9� who carried out uniaxial tension tests on dogbone
shaped PMMA plates with a central hole. The mechanical charac-
teristics of the used material are as follows: the elastic modulus
E=3000 MPa, the Poisson ratio �=0.36, the ultimate tensile stress
�c=72 MPa, and the critical release energy rate Gc=290 J /m.
The section of the specimens is 10�30 mm2. Central holes were
drilled with different diameters, namely, d=0.6 nm, 1.2 nm, 2 nm,
and 3 mm. Specimens without holes were also prepared and tested
for comparison. The test procedures and the results were detailed
in Ref. �9�.

Important size effect can be observed from the test results
within the chosen hole size range. It is seen that the strength of the
central-holed specimens depends strongly on the hole diameter.
First, the critical fracture load increases as the hole size decreases.
Second, it tends to the critical material strength �c as the hole size
tends to zero and to �c /3 as the hole size is large enough.

The stress distribution near a circular hole in an infinite plate
under uniaxial tensile stress is well known �28�. When the hole
sizes are much smaller with respect to the rest specimen dimen-
sions, the maximum tensile stress occurs at the hole boundary
with �

�r=a ,
=0�=3�� whatever the hole size. According to

Fig. 3 Hybrid strain gradient bidimensional elements: „a… a
6-noded element and „b… a height-noded element

Fig. 4 Cohesive element
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criterion �1�, the specimens would be broken at ��=�0 /3 what-
ever the hole size. It is clear that this prediction is not correct
compared with the experimental results.

We will apply the established model to predict the fracture of
the tested specimens. To this end, we construct a finite element
model representing the experimentation. The plates with a central
hole were meshed with 6-node triangle strain elements. Only a
quarter of the plate was meshed for reasons of symmetry. The
cohesive elements were placed on the ligament in order to assess
the fracture process. The remote load was applied on the top of the
plate by prescribing displacements in the y direction. A typical
finite element mesh is represented in Fig. 5.

The fracture loads were calculated by using an incremental pro-
cedure. The prescribed displacement was applied gradually. At
each step, iterations were carried out until convergence. When a
particular load level is reached, iterations will lead to the complete
separation of the ligament. This load will be considered as the
critical fracture load level of the specimen.

The only unknown material parameter in this model is the char-
acteristic length l in the strain gradient elements �the characteristic
length lc in the cohesive elements is related to l through Eq. �25��.
Figure 6 illustrates the critical fracture loads predicted by the
present model for different hole sizes and different values of the
parameter l. The experimental results are also plotted for compari-
son. First, we can observe that the present model can describe the
size effect observed in the experimentation whatever the value of
l, i.e., the critical fracture load increases as the hole size decreases.
However, we can also remark the very important influence of l on
the prediction accuracy. Roughly speaking, neglecting the strain
gradient effect �l=0� will lead to a too conservative fracture pre-
diction. On the contrary, a too large l will overestimate the critical
fracture loads. For the PMMA used in the present study, a value of
l=0.5 mm gives a suitable fit to the experimental data.

5 Discussions
In this paper, we have established a fracture model to predict

the failure of a structure initiated from a stress concentration
source. This model is established on the strain gradient finite ele-
ments associated with the basis of the cohesive elements. In this
model, three material parameters are necessary in order to de-

scribe the cohesive behaviors, namely, the ultimate tensile stress
�c, the critical release energy rate Gc, and a length parameter l.
Comparing with conventional cohesive models, we have intro-
duced a supplementary length parameter l. In the following, we
will examine the role of this parameter and try to reveal its physi-
cal significance.

5.1 Other Cohesive Models. First, one can suppose that other
cohesive models may fit better the experimental data; thus, the
introduction of the strain gradient theory may be not absolutely
necessary. In fact, different cohesive models are available in the
literature. In the following, we will use two typical cohesive mod-
els, namely, the Dugdale model �8� and the linear softening cohe-
sive model �20�, to predict the critical fracture loads of the con-
sidered specimens.

5.1.1 Dugdale Model. The application of the Dugdale model
in the present problem can be described as follows. An assumed
crack, corresponding to the damaged zone along the ligament, is
opened by remote loading �� with an undetermined length dc. The
uniformly distributed cohesive forces are applied on the crack
lips. The cohesive potential ���u�� can be written as follows:

� = �u��c �46�
This assumed crack is stable while the remote load is smaller than
its critical value. The two unknown critical parameters �� and dc
can be determined by considering the following conditions:

�1� The stresses are regular at the ends of the cohesive zone,
i.e., the resultant stress intensity factor induced by the re-
mote loading and the cohesive forces is nil, namely,

K���,dc� = 0 �47�
�2� The cohesive surfaces separate when the cohesive potential

reaches the critical energy release rate of the material,

����,dc� = Gc �48�
The detailed description of this application to the present
holed plates was given by Li and Zhang �9�.

5.1.2 Linear Softening Cohesive Model. Another simple rela-
tion is the linear softening cohesive fracture model �20�. In this
model, the interface begins to separate when the traction reaches a
maximum stress �c, then the traction decreases linearly as the
surface separation increases, and vanishes for a critical separation
value �u�max. Thus, the relationship between cohesive force and
surface separation is written as follows:

Fig. 5 A typical mesh of the finite element models

Fig. 6 Predicted critical loads at fracture with different length
parameters l
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T = �c�1 −
�u�

�u�max
	 �49�

It is generally accepted that the area under the traction-
displacement curve represents the cohesive energy �max or the
fracture toughness Gc �29�. Hence,

Gc =
1

2
�u�max�c �50�

The application of this model to the present problem is similar to
that of the Dugdale model �Li and Zhang �9��.

Figure 7 illustrates the simulation results of the critical remote
stresses for different hole sizes by using the above-mentioned co-
hesive models. We can remark that the Dugdale model predicts
the best fit to the experimental data. Similar results were obtained
with the proposed cohesive model. The prediction of the linear
softening model is much more conservative. In general, all these
models give lower critical loads at fracture compared with the
experimental data. Since the shapes of the traction-separation
curves of other cohesive models are often enveloped between the
Dugdale model and the linear model, we can expect that the pre-
dictions given by using other cohesive models are also enveloped
by those obtained by using these two cohesive models. These
results suggest that conventional cohesive models are not capable
to accurately describe the size effect observed in the tests.

5.2 Influence of the Values of Gc. The mediocre performance
of the conventional cohesive model may also be attributed to the
inaccuracy of the material parameters, namely, �c and Gc. In gen-
eral, �c is measured from uniaxial uniform tensile tests and quite
a good accuracy can be guaranteed. On the other hand, the critical
release energy rate Gc is measured from a crack propagation test,
in which the measurement accuracy may be worse than that of �c.
Hereafter, we will only examine the influence of the accuracy of
Gc on the prediction of the critical fracture loads. To this end, we
calculated the critical fracture loads by using different values of
Gc and by fixing a small value of l �l=0.01 mm� such that the
couple stress induced by the relative rotation can be neglected.
Different values of the critical strain energy release rate, namely,
gGc with the factor g=1, 2, 4, 8, and 16, were used in these
calculations. Figure 8 shows the results of this calculation. From
this figure, we remark that only large values of Gc can fit well the
experimental data. If the effect of l is neglected, we should need a
Gc about ten times larger than the measured value in order to fit
well the present experimental data. Consequently, the measure-

ment inaccuracy of Gc that we estimated to be about 30% cannot
explain the underestimation of the critical fracture loads by the
used cohesive model.

5.3 Validity of the Present Model. It is well known that the
strain gradient theory is suitable to describe the size effects ob-
served in a microscopic scale in some materials. The main param-
eters in this theory are the length parameters introduced in the
material law, for example, the parameter l in Eq. �8�. Physically
speaking, these length parameters represent a microscopic scale of
the material heterogeneities such as the distance between atoms in
crystals, the average chain length in polymers, the average size of
grains in alloys, and so on. In the literature, the measurement of
this parameter is often based on the materials response at a mi-
croscopic scale. In the context of elasticity, a few works have
employed atomistic methods and/or phonon dispersion curves to
obtain this order parameter �30–34�. These works indicated that
the characteristic length scale for nonlocal effects is within the
order of several nanometers for pure metals; it may be larger for
polymers and composites. Lam and Chong �16� and Lam et al.
�17� estimated that the nonlocal length in epoxy polymers can
reach 10–50 �m.

We have not found available measurements of this parameter
for PMMA materials in the literature so far. For the PMMA used
in the present work, we found that l�0.5 mm provides a satisfac-
tory agreement between test results and model predictions. Com-
paring to the values usually measured for polymers, this value
seems too large. Hereafter, we attempt to give a reasonable physi-
cal explication of this apparent abnormality.

As we have noticed, the parameter l in strain gradient theories
represents a microscopic length scale of the material. This length
is proportional to the average dimension of the heterogeneities in
the material. That is why l is larger in polymers or in composites
than in crystals. It is also to notice that this parameter is often
measured in the intact state of the materials. However, when we
would like to use this parameter to describe the fracture process,
we have to consider the fact that the material may be highly dam-
aged at fracture. As a consequence, the heterogeneities may be
largely developed compared to those in the intact state of the
material. Therefore, l must be larger for damaged materials than
for intact materials.

We can find some experimental works in the literature to sup-
port this argument. For instance, Ravi-chadar and Yang �35� have
studied the dynamic fracture in several polymers including the
PMMA. The examination of the fracture surfaces reveals clearly
that the operative micromechanisms that govern dynamic fracture

Fig. 7 Predicted critical loads at fracture with different cohe-
sive models

Fig. 8 Predicted critical loads at fracture with different critical
strain energy release rates gGc
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in brittle materials are the nucleation, growth, and coalescence of
secondary microcracks. Others studies �36� also showed the exis-
tence of a large number of microcracks before the final failure in
the PMMA under monotone or cyclic loading. Under certain con-
ditions, the length of these microcracks may attain 0.4–0.6 mm
before the final failure. Therefore, the heterogeneity increases in
the damaged PMMA due to the nucleation and the growth of the
secondary microcracks; thus, the characteristic length l in the
damaged PMMA can become much larger. From this point of
view, a large value of l found in this work is not really surprising.

According to this analysis, a logical approach is to adopt an
evolution law for l as function of damage. Taking a fixed large
value of l as in the present work may modify the macroscopic
behavior of the material in its undamaged state and introduce
errors in the calculations. In order to ensure the validity of the
present model, a necessary condition is that the global stiffness of
the specimens is not significantly modified by the use of large
value of l. For this, we can perform the calculations with a con-
ventional model, i.e., l=0, and with a strain gradient model, i.e.,
l�0. This verification was carried out with the holed plates con-
sidered in this work. Our calculations show that the supplemen-
tary stiffness introduced by the strain gradients can be neglected
in all the cases treated. The maximum stiffness differences were
found for the plate with the hole diameter d=3 mm. The apparent
Young modulus of the holed plate �average stress/apparent strain�
is 2940 MPa by taking l=0 and 2946 MPa by taking l=0.5 mm.
The supplementary global stiffness is only about 0.2%. Therefore,
we can confirm that the present fracture model does not modify
significantly the macroscopic material behavior even with a large
length parameter l=0.5 mm.

5.4 Mechanical Implications. The present model shows an
excellent capacity in predicting the fracture process induced by
nonsingular stress concentrations of brittle materials. In particular,
the size effect due to macroscopic defaults �holes in the present
study� is better described by using the present model than other
conventional cohesive models. Therefore, it will be interesting to
be able to reveal the physical significance of the present model.

First, it is necessary to notice that the conventional cohesive
models present capacities in describing the size effects of fracture
process. In the present study, we can observe that the cohesive
models without considering the strain gradient effect can provide
correct critical loads in the limit cases, i.e., when the hole is suf-
ficiently large and when the hole diameter tends to zero. However,
between these limits, the prediction accuracy is rather mediocre.

When we introduce the strain gradients in the cohesive model,
we can remark two complementary effects. First, the strain gradi-
ents modify the cohesive energy constitution. The cohesive energy
needed to separate the two surfaces includes not only the part due
to the displacement jump but also the part due to the relative
rotation. Consequently, if we admit the hypothesis of Griffith, i.e.,
the surface energy rate needed at fracture is a constant quantity for
all fracture cases, the fracture under uniform stresses would be
more difficult than that under stress concentration because in the
first case, there exists only displacement jump between the sepa-
rated surfaces in the cohesive energy.

The second effect is that the introduction of the strain gradients
makes the material stiffer when the rotational deformation is im-
portant. As a consequence, the material near a stress concentration
source is stiffer than that under a uniform traction. This leads to
smaller displacement and rotation jumps between the cohesive
surfaces. This may explain why the present model provides higher
fracture loads for specimens with holes than the conventional
models.

Mathematically speaking, in the present model, the second ef-
fect is predominant because it is the cause of the first one. In fact,
the couple stresses in the cohesive elements must be in equilib-
rium with those in the bulk elements. Therefore, the cohesive
energy related to the rotation jump in the cohesive elements van-

ishes if there are no node rotations in the bulk elements. On the
contrary, if the rotation effect is neglected in the cohesive ele-
ments, the couple stresses vanish in the bulk elements only at the
boundaries connected to the cohesive element. Thus, its influence
to the global behavior of the model should be secondary.

In summary, the introduction of the gradient effect in the bulk
elements is essential to simulate the size effects induced by stress
concentrations. In order to evaluate the influence of the gradient
effect in the cohesive elements, we carried out fracture simula-
tions by using fixed value of l �l=0.5 mm� and different values of
lc �lc=0, 1.754l, 3.508l�. Figure 9 illustrates the result of these
simulations. From Fig. 9, we can remark that the strain gradient in
cohesive elements plays an important role. The effect of the pa-
rameter lc is not negligible. However, increasing lc beyond a cer-
tain value will not significantly increase the critical fracture loads.
In the present work, lc is related to l through Eq. �25� according to
a simple consistency analysis. We believe that this relationship is
physically reasonable.

6 Concluding Remarks
In this paper, we have constructed a fracture model that associ-

ates the linear constitutive behavior with strain gradient to a co-
hesive model with relative rotation effects. Special finite elements
were established for the implementation of this model. This model
was then used to predict the fracture loads of a family of speci-
mens with centered hole. Confrontations between the predicted
fracture loads and the experimental results show that the present
fracture model possesses excellent capacities to provide accurate
critical loads at fracture for specimens with different hole sizes.

In conventional cohesive models or other fracture criteria is-
sued from fracture mechanics, two material parameters, the ulti-
mate stress �c and the critical energy release rate Gc, are mostly
used to describe the fracture process. In the present fracture
model, a third material parameter, the length parameter l in the
constitutive law with stain gradients, is utilized in addition. Intro-
duction of this additional parameter enables the present model to
count more precisely for stress concentrations of different levels,
which may be singular or not.

In this work, we have attempted to assess the influence of the
default �holes, inclusions� size on the fracture behavior of a brittle
material. Experimentations showed that this influence is obvious
not only in a microscopic scale but also in a macroscopic scale.
This size dependence cannot be well described by conventional
fracture theories. The introduction of the strain gradient theory
seems to be an appropriate approach to repair this weakness.

Fig. 9 Predicted critical loads at fracture with different values
of lc „l=0.5 mm…
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It is clear that the present work is just one of the first attempts
in this topic. Other theoretical and experimental works will be
necessary in order to provide more pertinent models.

References
�1� Bazant, Z. P., 1976, “Instability, Ductility and Size Effect in Strain Softening

Concrete,” J. Engrg. Mech. Div., 102, pp. 331–344.
�2� Irwin, G., 1968, “Linear Fracture Mechanics, Fracture Transition and Fracture

Control,” Eng. Fract. Mech., 1, pp. 241–257.
�3� McClintock, F. A., 1958, “Ductile Fracture Instability in Shear,” J. Appl.

Mech., 10, pp. 582–588.
�4� Ritchie, R., Knott, J., and Rice, J., 1973, “On the Relation Between Critical

Tensile Stress and Fracture Toughness in Mild Steel,” J. Mech. Phys. Solids,
21, pp. 395–410.

�5� Seweryn, A., and Lukaszewicz, A., 2002, “Verification of Brittle Fracture Cri-
teria for Elements With V-shaped Notches,” Eng. Fract. Mech., 69, pp. 1487–
1510.

�6� Leguillon, D., 2002, “Strength or Toughness? A Criterion for Crack Onset at a
Notch,” Eur. J. Mech. A/Solids, 21, pp. 61–72.

�7� Barenblatt, G., 1959, “The Formation of Equilibrium Cracks During Brittle
Fracture,” J. Appl. Math. Mech., 23, pp. 434–444.

�8� Dugdale, D., 1960, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys.
Solids, 8, pp. 100–104.

�9� Li, J., and Zhang, X. B., 2006, “A Criterion Study for Non-Singular Stress
Concentrations in Brittle or Quasi-Brittle Materials,” Eng. Fract. Mech., 73,
pp. 505–523.

�10� Toupin, R. A., 1962, “Elastic Materials With Couple Stresses,” Arch. Ration.
Mech. Anal., 11, pp. 385–414.

�11� Mindlin, R. D., and Tiersten, H. F., 1962, “Effects of Couple-Stresses in Linear
Elasticity,” Arch. Ration. Mech. Anal., 11, pp. 415–448.

�12� Aifantis, E. C., 1987, “The Physics of Plastic Deformation,” Int. J. Plast., 3,
pp. 211–247.

�13� Fleck, N. A., and Hutchinson, J. W., 1993, “A Phenomenological Theory for
Strain Gradient Effects in Plasticity,” J. Mech. Phys. Solids, 41, pp. 1825–
1857.

�14� Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W., 1994,
“Strain Gradient Plasticity: Theory and Experiments,” Acta Metall. Mater., 42,
pp. 475–487.

�15� Ma, Q., and Clarke, D. R., 1995, “Size Dependent Hardness of Silver Single
Crystals,” J. Mater. Res., 10, pp. 853–863.

�16� Lam, D. C. C., and Chong, A. C. M., 1999, “Indentation Model and Strain
Gradient Plasticity Law for Glassy Polymers,” J. Mater. Res., 14, pp. 3784–
3788.

�17� Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., and Tong, P., 2003,
“Experiments and Theory in Strain Gradient Elasticity,” J. Mech. Phys. Solids,
51, pp. 1477—1508.

�18� Yang, F., Chong, A. C. M., Lam, D. C. C., and Tong, P., 2002, “Couple Stress

Based Strain Gradient Theory for Elasticity,” Int. J. Solids Struct., 39, pp.
2731–2743.

�19� Siegmund, T., and Brocks, W., 2000, “A Numerical Study on the Correlation
Between the Work of Separation and Dissipation Rate in Ductile Fracture,”
Eng. Fract. Mech., 67, pp. 139–154.

�20� Camacho, G. T., and Ortiz M., 1996, “Computational Modelling of Impact
Damage in Brittle Materials,” Int. J. Solids Struct., 33, pp. 2899–938.

�21� Xu, X. P., and Needleman, A., 1994, “Numerical Simulation of Fast Crack
Growth in Brittle Solids,” J. Mech. Phys. Solids, 42, pp. 1397–1434.

�22� Foulk, J. W., Allen, D. H., and Helems, K. L. E., 2000, “Formulation of a
Three-Dimensional Cohesive Zone Model for Application to a Finite Element
Algorithm,” Comput. Methods Appl. Mech. Eng., 183, pp. 51–66.

�23� Lennard-Jones, J. E., 1924, “The Determination of Molecular Fields I: From
the Variation of the Viscosity of a Gas With Temperature,” Proc. R. Soc.
London, 106A, pp. 441–462.

�24� Mohammed, I., and Liechti, K. M., 2000, “Cohesive Zone Modelling of Crack
Nucleation at Bimaterial Corners,” J. Mech. Phys. Solids, 48, pp. 735–64.

�25� Hutchinson, J. W., and Evans, A. G., 2000, “Mechanical of Materials: Top-
Down Approaches to Fracture,” Acta Mater., 48, pp. 125–35.

�26� Herrmann, L. R., 1983, In Hybrid and Mixed, Finite Element Methods, �edited
by Atluri, S., N., Gallagher, R. H., and Zienkiewicz, O. C., Wiley, New York.

�27� Xia, Z. C., and Hutchinson, J. W., 1996, “Crack Tip Fields in Strain Gradient
Plasticity,” J. Mech. Phys. Solids, 44, pp. 1621–1648.

�28� Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, 3rd ed., Mc
Graw-Hill, New York.

�29� Rice, J. R., 1968, “A Path Independent Integral and Approximate Analysis of
Strain Concentration by Notches and Cracks,” ASME J. Appl. Mech., 35, pp.
379–86.

�30� Chen, Y., Lee, J. D., and Eskandarian, A., 2003, “Examining the Physical
Foundation of Continuum Theories from the Viewpoint of Phonon Dispersion
Relation,” Int. J. Eng. Sci., 41, pp. 61–83.

�31� Chen, Y., Lee, J. D., and Eskandarian, A., 2004, “Atomistic Viewpoint of the
Applicability of Micro Continuum Theories,” Int. J. Solids Struct., 41, p
2085–2097.

�32� Shibutani, Y., Vitek, V., and Bassani, J. L., 1998, “Nonlocal Properties of
Inhomogeneous Structures by Linking Approach of Generalized Continuum to
Atomistic Model,” Int. J. Mech. Sci., 40, pp. 129–137.

�33� Reid, A. C. E., and Gooding, R. J., 1992, “Inclusion Problem in a Two-
Dimensional Nonlocal Elastic Solid,” Phys. Rev. B, 46, pp. 6045–6049.

�34� Sharma, P., and Ganti, S., 2004, “Size-Dependent Eshelbys Tensor for Embed-
ded Nano-Inclusions Incorporating Surface/Interface Energies,” J. Appl.
Mech., 71, pp. 663–671.

�35� Ravi-chadar, K., and Yang, B., 1997, “On the Role of Microcracks in the
Dynamic Fracture of Brittle Materials,” J. Mech. Phys. Solids, 45, pp. 535–
563.

�36� McCormack, B., Walsh, C., Wilson, S., and Prendergast, P., 1998, “A Statisti-
cal Analysis of Microcrack Accumulation in PMMA Under Fatigue Loading:
Applications to Orthopaedic Implant Fixation,” Int. J. Fatigue, 20, pp. 581–
593.

Journal of Applied Mechanics MARCH 2008, Vol. 75 / 021004-9

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



I. Veloudis

Z. Yang

J. J. McGuirk

Department of Aeronautical and Automotive
Engineering,

Loughborough University,
Loughborough,

LE11 3TU Leicestershire, UK

LES of Wall-Bounded Flows Using
a New Subgrid Scale Model
Based on Energy Spectrum
Dissipation
A new one-equation subgrid scale (SGS) model that makes use of the transport equation
for the SGS kinetic energy �kSGS� to calculate a representative velocity scale for the SGS
fluid motion is proposed. In the kSGS transport equation used, a novel approach is devel-
oped for the calculation of the rate of dissipation of the SGS kinetic energy ���. This new
approach leads to an analytical computation of � via the assumption of a form for the
energy spectrum. This introduces a more accurate representation of the dissipation term,
which is then also used for the calculation of a representative length scale for the SGS
based on their energy content. Therefore, the SG length scale is not associated simply
with the grid resolution or the largest of the SGS but with a length scale representative of
the overall SGS energy content. The formulation of the model is presented in detail, and
the new approach is tested on a series of channel flow test cases with Reynolds number
based on friction velocity varying from 180 to 1800. The model is compared with the
Smagorinsky model (1963, “General Circulation Experiments With the Primitive Equa-
tions: 1. The Basic Experiment,” Mon. Weather Rev., 91, pp. 90–164) and the one-
equation model of Yoshizawa and Horiuti (1985, “A Statistically-Derived Subgrid Scale
Kinetic Energy Model for the Large Eddy Simulation of Turbulent Flows,” J. Phys. Soc.
Jpn., 54(8), pp. 2834–2839). The results indicate that the proposed model can provide, on
a given mesh, a more accurate representation of the SG scale effects.
�DOI: 10.1115/1.2775499�

1 Introduction
From the early stages of large eddy simulation �LES� develop-

ment, subgrid scale �SGS� models based on the transport equation
for the SGS kinetic energy kSGS have been proposed, motivated by
a wish to increase the physical accuracy of SGS modeling beyond
the original Smagorinsky algebraic eddy viscosity level and re-
flecting a similar development of improved Reynolds averaged
Navier–Stokes �RANS� turbulence models. Early attempts indi-
cated no significant advantages over algebraic models, at least as
far as mean velocity field prediction was concerned. However, in
terms of turbulence characteristics, transport equation models
showed a more accurate description �1�. These early models of
course relied on a priori specification of a number of model coef-
ficients required in the transport equation and eddy viscosity for-
mulation. In the last decade, considerable work has been pub-
lished, which combines a transport equation SGS model with a
dynamic procedure in order to obtain these model coefficients
dynamically as part of the flow simulation. Ghosal et al. �2� used
a constraint localized form of the dynamic procedure to obtain the
coefficients in a kSGS-equation model but presented only calcula-
tions for decaying turbulence behind a grid. Menon and Kim �3�
used a similar formulation for high Reynolds number decaying
and forced isotropic turbulence and a temporally evolving turbu-
lent mixing layer to obtain results in good agreement with experi-
mental and direct numerical simulation �DNS� data. More re-
cently, Krajnovic et al. �4� used both the Menon and Kim �3�
model and a model proposed by Davidson �5� for a recirculating
flow around a surface mounted cube, producing good results.

However, during this study, it was noted that for this complex
recirculating flow, grid resolution influenced the effectiveness of
the transport equation models and improved the accuracy of the
flow prediction. Evidence from the Krajnovic et al. �4� work im-
plies that the modeling improvements introduced so far by the
combination of a one-equation SGS model and the dynamic pro-
cedure are still not sufficient to cope with situations when an
insufficiently resolved coarse grid is used and when in some flow
regions, particularly near solid walls, a significant fraction of the
turbulence energy is contained in the SGS of the flow.

In addition, particular implementations of the dynamic proce-
dure have been reported to generate numerical instabilities �6�,
leading to the adoption of a “clipping” approach, which, depend-
ing on numerical details, may be ad hoc or based on physical
realizability considerations �3,6�. This practice has a direct effect
on the SGS stresses, potentially compromising the range of flow
problems where the model can deliver good performance. Evi-
dence to support this contention is that a homogeneous flow di-
rection has normally been required for this clipping practice to
achieve stability �7,8�.

Considering the above, further improvement in the area of SGS
modeling could either be achieved by the introduction of a second
transport equation �as in RANS formulations� or by the improved
formulation of one-equation models. Following the second school
of thought, Kajishima and Nomachi �9� pointed out the impor-
tance of an improved estimation of energy transfer between the
resolved and SGS and introduced a new one-equation model
based on the idea that the dynamic procedure is also suitable and
applicable to the calculation of energy transfer between grid and
SGS �9�. Hence, their model expressed the production term in the
kSGS equation using the Smagorinsky formulation but employed
the dynamic procedure to calculate the value of the Smagorinsky
constant while retaining the usual formulation of the SGS eddy
viscosity based on kSGS. The model was applied to plane channel

Contributed by the Applied Mechanics Division of ASME for publication in the
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flows and a rotating channel flow case giving good results in both
cases when the grid spacing was less than 30 wall units in the
spanwise direction. However, clipping of kSGS was still required in
areas where this quantity would have assumed negative values.

The net level of kSGS produced is, of course, a balance between
energy transfer from the resolved scales and dissipation into inter-
nal energy. It would therefore seem wise that any attempt to im-
prove modeling of the kSGS equation should consider both of these
processes. This paper therefore presents the development of a new
SGS model that introduces a new approach regarding the defini-
tion of various characteristic subgrid length scales used in the
model via a careful consideration of the relevant flow physics. The
increased use of flow physics in the model formulation leads to a
one-equation model that does not suffer from some of the limita-
tions discussed above. The new model retains the use of a trans-
port equation for kSGS, in the form proposed by Yoshizawa and
Horiuti �10� and Horiuti �1�, but with the dissipation term � cal-
culated explicitly from the integration of an assumed energy spec-
trum shape over the frequency range �length scale range� not re-
solved by the grid and hence corresponding to the entire SGS
region in wave-number space. In this way, the resulting behavior
of � is more physically correct; the SGS model proposed here is
hence termed an energy spectrum dissipation �ESD� model. Fur-
thermore, the improved estimation of � allows the model to pro-
duce a prediction of the local Kolmogorov length scale � and
hence the maximum eddy wave number �d. This enables an
energy-weighted average wave number �SGS to be defined for the
SGS �nonresolved� motions, and it is argued here that this consti-
tutes a more representative wave number from which the SG
length scale can be extracted. This is necessary because in many
cases, particularly at high Re numbers and for near-wall turbu-
lence where insufficient resolution is often typical in complex
geometry LES calculations, the nonresolved wave numbers still
contain a considerable amount of energy, and this should play an
important role in the determination of both turbulence velocity
and length scales used to evaluate the SGS eddy viscosity �t. Such
a role is not fulfilled by the classical, grid based SG length scale
used in the majority of SGS models but is reflected in the trans-
port equation based SGS model proposed here via a length scale
evaluated from the energy-weighted wave number �SGS. This in-
troduces a more accurate representation of the whole range of
nonresolved scales, in a manner more likely to be independent of
the computational grid employed, and therefore successful for a
wider range of levels of nonresolved SGS energy.

In the following section, a detailed presentation of the math-
ematical formulation of the model and its numerical implementa-
tion is given. Section 3 gives a brief description of the LES code
employed, the SGS models used for the comparative study, and
the test cases considered. The description of the results and the
discussion are given in Sec. 4 followed by conclusions in Sec. 5.

2 Development and Implementation of an Energy
Spectrum Dissipation Model

The driving motivation for this new model was the desire to
formulate a more accurate description of the SGS motions while
retaining the Boussinesq eddy viscosity assumption based on a
turbulence velocity scale extracted from a transport equation for
kSGS. Yoshizawa and Horiuti �10� proposed a one-equation SGS
model based on the transport equation for kSGS, which has been
used for wall-bounded flows giving good results �Horiuti �1��.
This model was therefore used as the base line for the develop-
ment of the new model presented here. According to the
Yoshizawa and Horiuti �10� model, the SGS kinematic eddy vis-
cosity �t is given by

�t = C��̄G
�kSGS �1�

In Eq. �1�, C�=0.05, �̄G= ��x�y�z�1/3 �the subscript G indicating
a grid-defined SG length scale�, and kSGS is derived from the
solution of the following transport equation:

�kSGS

�t
+

�ūjkSGS

�xj
= C1

�

�xj
��̄G

�kSGS
�kSGS

�xj
� + �

�2kSGS

�xj�xj
− �ijS̄ij

− C2
kSGS

3/2

�̄G

�2�

where C1=0.1, C2=1.0, �ij =−2�tS̄ij, and S̄ij =
1
2 ��ūi /�xj +�ūj /�xi�.

The model proposed here uses the formulation presented above
but introduces two new features: �i� an alternative approach to the
calculation of the local SG length scale �used in calculating �t, Eq.
�1�, and in the kSGS turbulent transport term� based on the energy
content of all SGSs rather than a grid geometrical characteristic
and �ii� an improved representation of � in Eq. �2�, replacing the

−C2�kSGS
3/2 / �̄G� term.

In the majority of SGS models, the length scale in �t is speci-
fied purely via the local grid size, therefore representing essen-
tially the SGSs closest to the grid cutoff wave number �c

=2� /2�̄G, where due to the Nyquist criterion, the smallest re-

solved length scale on a grid of cell size �̄G is 2�̄G. Although
these are the most energetic of the SGSs, this does not necessarily
mean that a length scale so derived represents the optimum ap-
proach to capture the effects of all SGSs on the resolved scale
motions. This aspect will, of course, be particularly true when grid
resolution is such that an appreciable level of energy is still
present in the SGSs. This scenario almost certainly occurs in the
near-wall region of most LES simulations at high Re numbers.

An improved description of the SG length scale should be re-
lated to a representative SGS wave number. Figure 1 gives a
graphical representation of this idea. In Fig. 1, a typical energy
spectrum E��� is shown, with the grid cutoff wave number �c

lying in the inertial subregion and the dissipation wave number �d
being the largest energy-containing eddy wave number given by

�d =
2�

�
�3�

where � is the Kolmogorov length scale �the smallest physically
realizable length scale�,

� = ��3

�
�1/4

�4�

Since the Kolmogorov scale is the smallest scale observed in
the turbulent motion, its magnitude at high Re is dictated only by
the energy dissipation rate � and the fluid viscosity �11�.

A representative wave number for the SGSs �SGS may be de-
fined via the convenient physical interpretation of an energy-
weighted average of all wave numbers between �c and �d. Taking
into account that

kSGS =�
�c

�d

E���d� �5�

�SGS can be defined via

�SGS =
1

kSGS
�

�c

�d

�E���d� �6�

The corresponding length scale can then be computed as
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�̄ES =
2�

�SGS
�7�

where the subscript ES indicates that the length scale is evaluated
via the energy spectrum.

It is clear that the calculation of �SGS requires kSGS, which may
be obtained from the solution of its modeled transport equation.
Furthermore, it requires a function that describes accurately the
shape of the energy spectrum E��� in as wide a range of flows as
possible, also ensuring, of course, that the selected spectrum shape
is consistent with the expected �−5/3 behavior for the inertial sub-
range at high Re since it is expected that �c will lie in this range.
In addition, the energy spectrum function is constrained by its
relation to the dissipation rate at high Re �11,12�,

� = 2��
0

	

�2E���d� �8�

The Kolmogorov spectrum

E��� = Ko�2/3�−5/3 �Ko = 1.4� �9�

commonly quoted in many turbulence textbooks is not a suitable
candidate since, although it fits inertial subrange conditions well,
it does not describe accurately the rate of decrease of the energy
content as �d is approached �12�, and another form has to be
employed.

Over the years, a number of researchers �13–16� have proposed
a variety of energy spectra. Pope �11� proposed a general form for
E���, given by Eq. �10� below, which demonstrates a good corre-
lation with experimental data obtained in a number of flows rang-
ing from fully developed pipe and channel flows to grid turbu-
lence and homogeneous shear flows, with a wide Re number
variation. This indicates that one real advantage of extracting in-
formation from the energy spectrum is that its form is, to a certain
degree, flow-type independent, giving a universal character to the
information obtained,

E��� = C�2/3�−5/3fL��L�f����� �10�

where fL��L� and f����� are specified nondimensional functions
given by

fL��L� = 	 �L

���L�2 − cL�1/2
11/3

�11�

f����� = exp„− 
������4 + c�
4�1/4 − c��… �12�

where L is the length scale characterizing the large eddies �L
k3/2 /�� and C, cL, c�, and 
 are positive constants �11�.

While Pope’s spectrum is arguably a good candidate, its math-
ematical complexity could lead to numerical complexities and ex-
pense when used in full LES calculations. Therefore, at this stage
of development and exploration of the model, an alternative ap-
proach was selected, namely, the model spectrum proposed by
Kovasznay �14�, which was preferred due to its mathematical sim-
plicity. The Kovasznay spectrum was developed based on locally
isotropic turbulence,

E��� = Ko�2/3�−5/3�1 −
Ko

2
� �

�d
�4/3�2

�13�

Equation �13� satisfies Eq. �8� and reduces to the Kolmogorov
spectrum for low values of �. The spectrum vanishes at � /�d
= �2 /Ko�3/4, which fixes the value of Ko at 2 to match the Kolmog-
orov scale. However, it may be advantageous to retain Ko as a
model parameter to allow better description of the spectrum shape
at wave numbers containing most of the nonresolved energy while
departing strictly from the Kolmogorov constraint.

If the form of E��� is assumed to be given by Eq. �13�, this
equation can be substituted in Eq. �5� and integrated to give

kSGS = �d
−2/3�−

3

2
A − 3AB +

AB2

2
� + 3AB�c

2/3�d −
AB2

2
�c

2�d
−8/3

+
3

2
A�c

−2/3 �14�

where A=Ko�2/3, B=Ko /2, and �d=2��1/4 /�3/4.
The left hand side of Eq. �14� can be assumed known from the

solution of the kSGS transport equation. Hence, the only unknown
in Eq. �14� is �. Rearranging Eq. �14� in terms of � gives

kSGS = �1/2�B3D2/3 − 6B2D2/3 − 3BD2/3� + �1/3�6B2�c
2/3D4/3�

+ �2/3�3B�c
−2/3� − B3�c

2D8/3 �15�

where D=�3/4 /2�. Moving kSGS to the right hand side, Eq. �15�
can be rewritten as

f��� = 0 = �1/2�B3D2/3 − 6B2D2/3 − 3BD2/3� + �1/3�6B2�c
2/3D4/3�

+ �2/3�3B�c
−2/3� − �B3�c

2D8/3 + kSGS� �16�
Equation �16� can be written as a fourth order polynomial in

�=�1/6 in the following form:

g��� = 0 = �4�3B�c
−2/3� + �3�B3D2/3 − 6B2D2/3 − 3BD2/3�

+ �2�6B2�c
2/3D4/3� − �B3�c

2D8/3 + kSGS� �17�
For the range of physically realizable values of all parameters

involved in Eq. �17� �i.e., Ko�2.0 and �c, kSGS, ��0.0�, the terms

Fig. 1 Schematic of energy distribution among wave numbers
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3B�c
−2/3�=Cg1� and 6B2�c

2/3D4/3�=Cg3� are positive definite, while
the terms B3D2/3−6B2D2/3−3BD2/3�=Cg2� and −�B3�c

2D8/3

+kSGS��=Cg4� are negative definite. Using the Routh–Hurwitz cri-
terion �17�, it can be shown that Eq. �17� has three roots with a
positive real part. Factorization of Eq. �17� by �2 leads to

g��� = 0 = �2��2 +
Cg2

Cg1
� +

Cg3

Cg1
� +

Cg4

Cg1
�18�

The quadratic expression in parentheses in Eq. �18� has a pair
of complex conjugate roots with a positive real part due to the
nature of the physically realizable values of the coefficients, lead-
ing to the conclusion that Eq. �17� has only one positive real root.
Due to the positive definite nature of �, the only physically real-
izable root is that corresponding to this positive real root. The
above argument may be confirmed by plotting f��� against � for
two limiting cases of �c min and �c max �defined below� with
kSGS=0.0. Note that for any isothermal incompressible flow, Ko
and � are constants, and therefore the only variable parameters to
be expected from the flow simulation will be �c �due to the use of
a nonuniform grid� and kSGS. �c will typically vary between �c max
�corresponding to the near-wall cells that are typically the smallest
in the grid� and �c min �corresponding to the largest cells in the
grid, typically well away from any walls�. Regarding kSGS, the
limiting case to consider is when it becomes zero since then, for
the same value of �, f��� is closest to the f���=0 axis, as can be
seen from Eq. �16�.

Extracting �c min and �c max from a grid used below for a fully
developed channel flow simulation at Re�=180, two plots were
generated, presented in Fig. 2 for �c max and in Fig. 3 for �c min,
both with kSGS=0.0. The plots show that in this extreme case, f���
does indeed cross zero at only one point, corresponding to the
single positive real root of g���. The second observation is that

this root is larger in magnitude when closer to the wall, as shown
in Fig. 2, indicating a correct representation of the physical be-
havior of �. Finally, Figs. 2 and 3 verify that the nature and the
number of roots of f��� does not vary with �c, as indicated pre-
viously by the mathematical analysis of g���.

From the above, it was concluded that the solution of Eq. �15�
can return an accurate representation of � when provided with the
appropriate input of �c and kSGS from the numerical LES solution.
As soon as this value of � is found, �d can be calculated and used

in Eq. �6� to calculate �SGS and hence �̄ES from Eq. �7�.
In general, any root identification algorithm may be used to find

the root of Eq. �16�. For the present study, a modified Newton–
Raphson method �18� was employed; this uses the classic
Newton–Raphson algorithm but with an extra bisection step taken
every time the algorithm begins to search outside a prespecified
range of � values or does not narrow down the field of possible
roots in a steady manner �18�. The search range of � for the
identification of the Eq. �16� root is user defined and is based on a
number of considerations. Since � cannot be negative, the search
range lower limit can be obviously set to zero. The upper limit is
set to a value ten times the value of � from the previous time step.
This definition of the upper limit can be changed, but it was found
that this approach was adequate for all simulations performed and
reported below. This aspect of the method should, however, be
investigated further.

The transport equation used for kSGS is that given by Eqs. �1�
and �2� above, with the differences being that �i� the dissipation

term in Eq. �2� is not the modeled form −C2kSGS
3/2 / �̄G but rather �

calculated directly using the procedure described above and �ii�
the SG length scale �̄ES is used to replace �̄G in both the �t
definition �Eq. �1�� and the turbulent diffusion term in Eq. �2�.

Fig. 2 Variation of f„�… with � for �c max

Fig. 3 Variation of f„�… with � for �c min
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The model proposed here is termed as the ESD model and
involves the following steps.

1. Use the value of kSGS from the previous time step and the
value of �c at each grid node to calculate � from the root of
Eq. �15�, using the enhanced Newton–Raphson method.

2. Use this value of � to compute �d.
3. Use �d in Eq. �6� to calculate �SGS and hence �̄ES.
4. Use �̄ES to compute �t.
5. Use � for the solution of the transport equation for kSGS.

Note that the new length scale �̄ES is also introduced into the
production term of the kSGS transport equation by using the new

formulation of �t=C��̄ES
�kSGS in the calculation of �ij. At the

beginning of the simulation, initial values of kSGS and � are cal-
culated as follows:

kSGS = 2S̄ijS̄ij

C��̄G
2

C1
�19�

� = C2
kSGS

3/2

�̄G

�20�

Equation �19� was proposed by Ghosal et al. �2� and Dejoan
and Schiestel �19� and is based on an equilibrium assumption

between kSGS production and dissipation; S̄ij is the resolved scale
strain rate tensor and C�, C1, and C2 are the coefficients used in
the model of Yoshizawa and Horiuti �10�.

3 Description of the Large Eddy Simulation Code,
Subgrid Scale Models Used, and Simulations Performed

An in-house code, DELTA �20,21�, was used for the present
study. DELTA is based on a finite-volume approach for the solution
of the governing equations. It uses a collocated variable arrange-
ment on a nonorthogonal curvilinear block-structured mesh, in
combination with Rhie and Chow smoothing to avoid pressure-
velocity decoupling. DELTA adopts a derivative of the SIMPLE pres-
sure correction method, designed to handle both incompressible
and compressible flows �22�. Originally written as a RANS solver,
DELTA was extended to allow LES calculations by introducing four
new features: an explicit time-stepping formulation employing a
third order accurate low storage Runge–Kutta method �23�, a sec-
ond order central differencing for convection term discretization,
an appropriate scaling of the Rhie and Chow smoothing terms to
take account of the very small time steps needed in LES calcula-
tions �due to the significant variations in cell volume size across
the solution domain�, and the Smagorinsky SGS model �24� with
the near-wall damping formulation of Piomelli et al. �25�. Further
development of the LES version of the code involved the intro-
duction of a number of SGS models �26�.

For the present study, two SGS models have been compared
against the new model proposed here, namely, the algebraic Sma-
gorinsky model �24� and the original kSGS-equation model pro-
posed by Yoshizawa and Horiuti �10�. Both models are based on a
high Re formulation, and therefore they require a near-wall damp-
ing function to account for the low Re effects present in the near-
wall region.

The Smagorinsky model expresses the eddy viscosity �t as

�t = l2S̄ = �Cs�̄G�2S̄ �21�

where l is the Smagorinsky mixing length, an idea based on
Prandtl’s mixing length hypothesis. l is assumed to be given by
the product of the Smagorinsky constant Cs and the filter width

�̄G. S̄ is the filtered rate of strain given by

S̄  �2S̄ijS̄ij�1/2 �22�

The Smagorinsky constant was calculated from the near-wall
damping function of Piomelli et al. �25�, given by

Cs = Cso�1 − exp�− y+/A+�3�1/2 �23�

where Cso=0.1 and A+=25.
The Yoshizawa and Horiuti �10� kSGS-equation model is a one-

equation model that solves Eq. �2� and uses a form of Eq. �1� to
calculate the SGS viscosity �t. In the present study, the version of
this model incorporating the near-wall damping function proposed
by Yoshizawa et al. �27� was used; this introduces low Re damp-
ing into the eddy viscosity �Eq. �1�� via

�t = FwYC��̄G
�kSGS �24�

where

FwY = 1 − exp�− �Cw

�2kSGS

S̄�̄G

�2� �25�

and Cw=21.0. The combination of the Yoshizawa and Horiuti �10�
kSGS-equation model and the near-wall damping function pro-
posed by Yoshizawa et al. �27� is hereafter refered to as the “stan-
dard” kSGS-equation approach.

For the present ESD model, the modifications introduced do not
address the need for low Re damping at the length scale, so a
damping function is still needed. In order to examine how sensi-
tive LES predictions are to the particular near-wall low Re damp-
ing formulation introduced into the ESD SGS model approach, a
second alternative suggested by Inagi et al. �28� was explored
along with the near-wall damping function of Yoshizawa et al.
�27�. The Inagi et al. �28� formulation proposes a different damp-
ing function,

FwI =
1

1 + �̄GS̄/CT
�kSGS

�26�

where CT=10.0.
This function was used by Inagi et al. �28� in combination with

a one-equation kSGS SGS model for channel and rotating channel
flows, flow over a backward facing step, and flow around a bluff
body and provided superior results to the function �Eq. �23�� of
Piomelli et al. �25�.

Preliminary calculations were performed using both Eqs. �25�
and �26� as low Re damping functions, with superior results being
obtained with the Inagi et al. �28� approach �Eq. �26��. Therefore,
the Inagi et al. �28� approach was adopted to be used in conjunc-
tion with the ESD SGS model. This was only modified to allow
the physically more representative length scale proposed by the
ESD approach to be used, so that Eq. �26� was changed to

FwI =
1

1 + �̄ESS̄/CT
�kSGS

�27�

The three SGS models were tested on four fully developed
channel flow cases with Reynolds numbers �based on the channel
half height  and the friction velocity u�� Re� of 180, 395, 640,
and 1800. The extent of the flow domain for each case, as well as
the grid characteristics, can be seen in Table 1.

Reference data used below for the first and second cases were
provided by DNS calculations performed by Kim et al. �29� and
Moser et al. �30�. For the Re�=180 simulation, Kim et al. used a
192�129�160 grid to resolve the turbulent flow through a chan-
nel of dimensions 4��2�2�. The resulting cell dimensions
in wall units were �x+�12, 0.05��y+�4.4, and �z+�7. For
the Re�=395 simulation, Moser et al. used a 256�193�192 grid
to resolve the turbulent flow through a channel of dimensions
2��2�2�. Their resulting resolution in terms of wall units
was �x+�10, 0.05��y+�6.5, and �z+�6.5. For the third case,
where Re�=640, reference DNS data were provided by the calcu-
lation performed by Iwamoto �31�. The extent of the flow domain
in that calculation was 2.5��2��, and the number of points
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used was 288�384�257 in the x, y, and z directions respec-
tively. This resulted in �x+=17.7, 0.049��y+�7.98, and �z+

=5.32. In the fourth case, the bulk Reynolds number was signifi-
cantly higher at Reb=38,000. This test case was originally pre-
sented by Piomelli �7�, who used a dynamic SGS model. Shah and
Ferziger �32� also predicted this flow, employing a noneddy vis-
cosity based SGS model. Experimental results for this flow are

available from the study of Wei and Willmarth �33� using a water-
tunnel and local density approximation �LDA� instrumentation. In
the computations performed for the present study, the flow domain
size and the grid resolution used for this case, as given in Table 1,
matched those employed by Piomelli �7� and Shah and Ferziger
�32�.

Fig. 4 U+ versus y+ for „a… Re�=180 and „b… Re�=395 Fig. 5 U+ versus y+ for „a… Re�=640 and „b… Re�=1800

Table 1 Description of test cases

Case name Reb Re� Lx�Ly �Lz Nx�Ny �Nz �x+ �y+ �z+

1 3000 180 12�2�2 70�56�38 34 1.16–15 10
2 6960 395 2.5��2�� 64�64�64 50 0.18–39 20
3 12,155 640 2.5��2�� 64�64�64 81 0.30–63 32
4 38,000 1800 2.5��2� �� /2� 64�80�80 218 0.66–136 35
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4 Results and Discussion
The time-averaged statistics presented in the following were

collected over ten flowthrough times in order to ensure that they
were statistically stationary. During these calculations, it was
found that the ESD model was approximately 50% more expen-
sive than the original kSGS model due to the root search algorithm
required, resulting in an increase of the computational time re-
quired per time step by approximately 18%. This was an indica-
tion that future implementations should either involve a quicker
algorithm or adopt an analytical solution of the polynomial equa-
tion for � whenever this is possible. However, even this increase
in computational cost was less than the increase that would result
from the introduction of a further transport equation for �.

Figures 4 and 5 show the results of the mean flow field, in terms
of the U+ /y+ distribution, for Re�=180, 395, 640, and 1800. In all
figures presented, the Smagorinsky model prediction is labeled as
Smag, the new model prediction as ESD, the Yoshizawa and
Horiuti model �10� as k-eqn, and the DNS data �29,31� as DNS. In
case 4, the reference data used was from the experiments of Wei
and Willmarth �33�, labeled as WW.

In case 1, the influence of the SGS model was insignificant due
to the low Re� and the overall good grid resolution. All the models
behaved similarly with ESD being slightly more dissipative than
the others. The new model gave the largest error in the prediction
of the skin friction coefficient Cf �but still only 5%� but the small-
est error in the prediction of the centerline to bulk velocity ratio
Uc /Ub �see Table 2�. The fact that the grid was not particularly
fine in the region next to the wall �note that y+=1.16� is believed
to be the main source of error in the prediction of Cf. In Table 2,

the predicted values of Uc /Ub and Cf are compared to expected
values calculated from the empirical formulas proposed by Dean
�34� with corresponding percentage errors.

As Re increases, without a corresponding grid refinement, the
role of the SGS model in the calculation of the flow becomes
increasingly important and the physical realism of the model is
more closely tested. Hence, it can be seen that in the rest of the
flow cases considered, the various SGS models give clearly dis-
tinguishable predictions. In case 2, the Smagorinsky model over-
predicted the log-law region due to a 16% underprediction of Cf,
which feeds through the skin friction velocity and hence to the
nondimensionalization of U. This, however, did not affect the
slope of the log-law region, which was captured accurately. This
feature of the U+ distribution was captured by all models tested.
The underprediction of Cf and the overprediction of the velocity
profile in the log-law region were reproduced consistently by the
basic Smagorinsky SGS model in all cases, with the overshoot
worsening as Re� increased. The kSGS-equation model and the
ESD model produced a similar level of accuracy for the overall
distribution of U+ for case 2, although the kSGS-equation model
returned a much larger error in Cf �6.51% compared to −0.3%�.
The accuracy of the capture of the overall streamwise velocity
profile was also similar, as indicated by the small error in Uc /Ub
with both one-equation SGS models. A factor that contributed to
this was the near-wall damping function used, which had been
“calibrated” for this specific case.

It is very noticeable that the ESD model captured the log-law
region very well for higher Re cases 3 and 4 and managed to

Table 2 Predictions of Cf

Case name Model Cf Cf Dean Error �%� Uc /Ub �Uc /Ub�Dean Error �%�

1 Smag 0.008351 0.008296 0.66 1.145 1.157 −1.04
2 Smag 0.005665 0.006720 −15.71 1.140 1.146 −0.52
3 Smag 0.004428 0.005846 −24.27 1.135 1.139 −0.35
4 Smag 0.003478 0.004397 −20.90 1.079 1.124 −4.00
1 kSGS-eqn 0.008427 0.008296 1.58 1.147 1.157 −0.86
2 kSGS-eqn 0.006282 0.006720 −6.51 1.150 1.146 0.35
3 kSGS-eqn 0.004874 0.005846 −16.63 1.140 1.139 0.09
4 kSGS-eqn 0.003707 0.004397 −15.67 1.074 1.124 −4.45
1 ESD 0.008731 0.008296 5.25 1.150 1.157 −0.61
2 ESD 0.006701 0.006720 −0.30 1.157 1.146 0.96
3 ESD 0.005694 0.005846 −2.60 1.147 1.139 0.70
4 ESD 0.004611 0.004397 4.89 1.096 1.124 −2.49

Fig. 6 U+ versus y+ for Re�=180 using the ESD model and Inagi et al. †28‡
function with CT=5.0 and 10.0
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return the most accurate prediction for Cf overall. However, the
model did not reproduce the upper part of the linear sublayer and
the buffer layer very well �i.e., y+�30�.

There are two factors that have contributed to the ESD under-
prediction of U+ in the linear sublayer and buffer layer regions,
namely, the chosen energy spectrum shape and the near-wall
damping function employed. The Kovasznay spectrum was devel-
oped on the assumption of equilibrium between turbulent energy
production and dissipation. However, in the regions of interest,
this assumption is not valid, and as a result, the model spectrum is
not truly representative of the energy distribution. As a result, the
computed length scale may not reflect the characteristic scales of
the SGS structures, producing excessive dissipation. The use of a
more accurate model spectrum shape, such as Pope’s �11� could
be beneficial. This is because Pope’s spectrum applies to a much
wider range of Re compared to Kovasznay’s spectrum. As a result,
even in cases of locally low Re, where turbulence production and

dissipation wave numbers are close, but without a clear inertial
region, Pope’s spectrum would be able to return a more accurate

spectrum shape, resulting in a more accurate �̄ES, while
Kovasznay’s spectrum is more likely to be in error.

As far as the near-wall damping function is concerned, Inagi et
al. �28� calibrated this function for Re�=395. This may have had
an adverse effect on the use of the function for other Re numbers.
This was confirmed by a test simulation performed using CT
=5.0 �rather than 10.0� for Re�=180. The results in terms of wall-
normal U+ distribution show a considerable improvement over the
whole y+ range, as can be seen in Fig. 6. The improvement ex-
tends to the Cf prediction error, which was reduced from 5.25% to
1.11%.

The marginally more accurate prediction of Uc /Ub by the other
models did not counteract their larger error in Cf, resulting in the
overprediction of the log-law region, with the worst case being
that of the Smagorinsky model. This same pattern can also be
seen in the final flow case. In case 4, the Smagorinsky and
kSGS-equation models produced similar flow behaviors in the lin-
ear sublayer and buffer regions with some differentiation at the

Fig. 7 Nondimensional rms values of u�¯ +, v�¯ +, and w�¯ + versus
y+ for Re�=180

Fig. 8 Nondimensional rms values of u�¯ +, v�¯ +, and w�¯ + versus
y+ for Re�=395
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end of the latter, mainly due to the better prediction of the skin
friction by the transport equation model. The ESD model, how-
ever, gave a clearly improved overall prediction although with
some deviations, as noted above, up to y+�30. The slight over-
shoot at the end of the buffer layer is typical for linear eddy
viscosity based models and has been reported by a number of
researchers �32,35�.

From the observations made, it is clear that as Re� was in-
creased �at an approximately constant grid resolution� and the
energy in the SGS was therefore larger due to the lack of grid
refinement, the error in the prediction of Cf increased for both
Smagorinsky and standard one-equation SGS models. However,
the behavior of the ESD model as Re� was increased indicates a
much more robust maintenance of accuracy as Re increases, with
predictive accuracy for parameters such as Cf and Reynolds aver-
aged velocity distributions remaining essentially similar over all
test cases, in contrast to the other models. This confirms the idea
that information extracted from the energy spectrum, even if this
adopts an approximate modeled form, can be used for a variety of
flow conditions giving satisfactory results.

In order to further investigate this observation, the distribution
of predicted Reynolds stresses should be taken into account. Fig-
ures 7–9 present the variation of the rms values of nondimensional

resolved u�̄+, v�̄+, and w�¯ + with y+, for cases 1, 2, and 3, respec-
tively. Figure 10 presents comparison with the nondimensional

resolved value of u�v�+ instead of w�¯ + for case 4 since no experi-

mental data were available for w�¯ +.
Figures 7–10 show that the main differences in the predicted

stresses are concentrated in the near-wall region, while, in general,
further away from the wall and in the flow core all models gave
the same level of accuracy and were in good agreement with the
reference DNS and experimental data.

The general trend in the near-wall region was an overestimation

of u�̄+ and an underestimation of v�̄+ and w�¯ +, with the worst case
being at Re�=1800 and the best at Re�=180 and Re�=395. In
cases 1 and 2, the Smagorinsky, kSGS, and ESD models gave simi-
lar results, while their predictions began to separate as Re� was

Fig. 9 Nondimensional rms values of u�¯ +, v�¯ +, and w�¯ + versus
y+ for Re�=640

Fig. 10 Nondimensional rms values of u�¯ +, v�¯ +, and u�v�+ ver-
sus y+ for Re�=1800
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increased, with the ESD approach giving the best overall predic-
tions. The kSGS-equation model returned accurate results for cases
1 and 2, indicating a very good agreement with reference data,

particularly for v�̄+ and w�¯ +. However, in cases 3 and 4, a consid-
erable overprediction of the streamwise stress was present.

The effect of the SG modeling on the development of the tur-
bulent flow field can also be seen through a visualization of the
coherent structures present in the flow. Using the Chong et al.
proposal �36�, the core of such structures may be identified using
isosurfaces of the discriminant of the characteristic equation of the
velocity-gradient tensor to locate regions where this parameter is
positive. Figures 11–13 show coherent structures using this tech-
nique for the Re�=395 flow case.

The structures shown in these figures are aligned with the
streamwise direction and inclined to the wall surface at an angle
of 30–45 deg. Their average length in wall units is 200–300, and
their width is approximately 100. These observations are in good
agreement with the description of coherent structures in channel
flow made by Sagaut �37�.

Comparing the three figures, it is clear that the coherent struc-
tures predicted using the Smagorinsky model were significantly
fewer than in the other two cases. This is an indication that the
dissipative character of the Smagorinsky model resulted in a flow
field with lower large scale turbulence. The ESD and
kSGS-equation models predicted a similar number of coherent
structures, with the ESD model producing slightly wider forma-
tions. Considering the degree of sensitivity of Cf to the near-wall

fluid structures’ activity, it can be suggested that there is a direct
link between the predicted Cf and the coherent structures pre-
dicted in the flow.

5 Conclusions
The formulation and implementation of a new SGS model has

been described—the ESD model. The model was used in a finite-
volume code and tested against the Smagorinsky model �24� and
the kSGS-equation model proposed by Yoshizawa and Horiuti �10�
on four fully developed channel flow cases at Re�=180, 395, 640,
and 1800. The computational cost of the ESD model was found to
be slightly increased in comparison with the other two models, but
still less expensive than using a further transport equation for �.

In terms of mean velocity distribution, the ESD model indicated
some discrepancy in capturing accurately the linear sublayer and
the lower part of the buffer layer, in all probability due to the
model spectrum employed in the current implementation. How-
ever, in all cases, predictions of the log-law region were in very
good agreement with the reference data.

The ESD model showed superior performance at high Re on a
given grid compared to the other two SGS models, which did not
manage to predict accurately the skin friction coefficient in the
higher Reynolds number cases, and as a result, they overpredicted
the variation of U+ in the log-law region. In contrast, the proposed
ESD model was less sensitive to grid resolution at high Re, giving
the most accurate Cf predictions.

Regarding the prediction of normal and shear stresses, the gen-
eral trend was an overprediction of the streamwise stress and an
underprediction of the other normal stresses. The main differences
were in the near-wall region, while further away all three models
gave similar results, in good agreement with reference data. The
ESD model produced good results in all cases tested, indicating
that it is a good candidate for further testing in more complex
cases. This was also confirmed via the visualization of the coher-
ent structures in the instantaneous flow field, which indicated that
the ESD model produced a realistic turbulent field, especially
compared to the Smagorinsky model.

In conclusion, this first series of tests of the ESD model ap-
proach has provided promising results, indicating the validity of
the idea and the potential of this new SGS model. Further studies
should concentrate on four main areas: the use of a more realistic
energy spectrum, the investigation of the near-wall damping effect
on the model behavior, the application of the model to more com-
plex, higher Re number flow cases, and the investigation of a
possible reduction of computational cost via the use of an alter-
native numerical implementation of the root identification algo-
rithm.

Fig. 11 Discriminant isocontour for the Smagorinsky model
„case 2…

Fig. 12 Discriminant isocontour for the kSGS-equation model
„case 2…

Fig. 13 Discriminant isocontour for the ESD model „case 2…
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Analytical Model of the Confined
Compression Test Used to
Characterize Brittle Materials
Numerical and analytical simulations of projectiles penetrating brittle materials such as
ceramics and glasses are a very challenging problem. The difficulty comes from the fact
that the yield surface of brittle materials is not well characterized (or even defined), and
the failure process may change the material properties. Recently, some works have shown
that it is possible to characterize and find the constitutive equation for brittle materials
using a confined compression test, i.e., a test where a cylindrical specimen, surrounded
by a confining sleeve, is being compressed axially by a mechanical testing machine. This
paper focuses on understanding the confined compression test by presenting an analytical
model that explicitly solves for the stresses and strains in the sample and the sleeve,
assuming the sleeve is elastic and the specimen is elastoplastic with a Drucker–Prager
plasticity model. The first part of the paper briefly explains the experimental technique
and how the stress-strain curves obtained during the test are interpreted. A simple and
straightforward approach to obtain the constitutive model of the material is then pre-
sented. Finally, a full analytical model with explicit solution for displacements, strains,
and stresses in the specimen and the sleeve is described. The advantage of the analytical
model is that it gives a full understanding of the test, as well as information that can be
useful when designing the test (e.g., displacements of the outer radius of the specimen).
�DOI: 10.1115/1.2775501�

1 Introduction
To be a useful tool, analytical and numerical simulations of

impact into brittle materials, such as glass or silicon carbide, re-
quire accurate constitutive equations. These are needed for both
the projectile and the target. The added complication with brittle
materials under impact is that their strength depends on the hy-
drostatic pressure, an effect often modeled with a Drucker–Prager
�1� model or other similar plasticity models �e.g., Johnson–
Holmquist �2��.

Low pressure confinement experiments are relatively simple
and well understood; see, for example, static and dynamic tests by
Chen and Ravichandran �3,4� and, more recently, Nielsen et al.
�5�. Confinement pressures found in the literature are rarely above
100 MPa because triaxial tests at high pressures are very expen-
sive. High confinement pressures are only achieved in plate im-
pact experiments �e.g., Partom �6�� at very high strain rates. Ma-
terial properties are usually backed out from numerical
simulations of the experiment.

Recently, a modification of the confinement sleeve technique,
which allowed attainment of moderately high confinement pres-
sures of up to 1 GPa, has been presented by Dannemann et al. �7�
based on the work of Walker et al. �8�. The technique consists of
testing a specimen in compression while being surrounded by a
thick elastic sleeve. A strain gage on the sleeve measures hoop
strain during the test indirectly. The confinement pressure is then
determined with a simple elastic calculation. The same technique
has been recently used by Forquin et al. �9�. Forquin et al. used
numerical simulations to relate the hoop strain and the pressure in
the specimen.

This paper presents a detailed analytical model of the experi-
ment, which helps in the interpretation of the results. The model
assumes an elastoplastic specimen and an elastic sleeve. It is

shown that displacements, strains, and stresses can be solved ex-
plicitly, and relatively simple expressions are obtained. The model
can also be used to determine the elastic and plastic constants of
the specimen material being tested. It is remarkable that, when
applied to glass, the strength found using this technique is very
similar to that found in Partom’s paper where a plate impact tech-
nique was used.

2 Experimental Technique
The experimental technique is carefully described in Ref. �10�

but is briefly explained in this paper for completeness. The speci-
men to be tested is inserted into a Vascomax steel sleeve �Fig. 1�
honed to fit the specimen. The sleeve outer diameter is 12.70 mm.

An axial compressive stress is applied to the specimen with a
mechanical testing servohydraulic �MTS� machine by means of
two SiC–N platens. The platens are not shown in Fig. 1. The
variables recorded during the test are axial stress in the specimen
measured by a load cell in the MTS machine, axial strain in the
specimen measured by a clip gage placed on the top and bottom
platens, and axial and hoop strain in the sleeve measured, respec-
tively, by a vertical and annular strain gage on the sleeve.

The objective of the experiments is to obtain data for determi-
nation of a constitutive model �elastic and plastic parts� for the
specimen. It is shown in this paper that by measuring the elastic
and plastic slopes of the stress versus axial strain and stress versus
hoop-strain curves obtained in the tests, it is possible to calculate
the desired constants.

3 Interpretation
The result of a typical test is shown in Fig. 2. This particular

sample �borosilicate glass that was predamaged prior to testing by
using a thermal shock� underwent ten load-unload cycles where
the maximum load was gradually incremented.

Figure 3 is an enlargement of the first cycle of a typical test to
facilitate its interpretation. There are four distinctive parts in the
load curve of Fig. 3 that are common to most of the tests and
cycles.

Contributed by the Applied Mechanics Division of ASME for publication in the
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1. First is a small nonlinear start, due probably to gaps between
the specimen and the sleeve or between the anvils and the
specimen and other small misalignments at the beginning of
the test. This part is ignored in the analysis of the test since
it does not provide any useful information about the speci-
men itself.

2. Second is a linear elastic ramp where, if unloading occurs,
there will be no permanent deformation. The linear part is
emphasized with a dashed straight line.

3 A small plastic deformation region is also apparent in most of
the tests. Brittle materials are known to be able to undergo a
brittle-ductile transition when tested under confinement, see,
for example, Horii and Nemat-Nasser �11� and, more re-
cently, Lankford et al. �12�. When unloading occurs in this
part of the curve, the specimen deformation becomes perma-
nent in both the hoop and axial directions.

4. Sudden jumps in axial or hoop strain are clearly seen in Fig.
2. These jumps are interpreted as the specimen faulting and
slipping. This mechanism would create a big jump in hoop
strain, as observed, while the load remains approximately
constant.

A graphical summary of how the data from the test are inter-
preted �for a single cycle� is shown in Fig. 4. Slopes 1 and 1� are
the elastic part of the load curve and slopes 2 and 2� the plastic
part. Failure with slippage occurs when the strain increases sud-
denly while the load remains constant.

4 Simple Method for Direct Determination of the
Drucker–Prager Equation

By using the classical solution for a thick tube with an internal
pressure p, it is possible to easily calculate the confinement pres-
sure Pc on the specimen as a function of hoop strain, see Ref.
�13�, p. 59:

Pc =
E

2

b2 − a2

a2 �� �1�

where E is the Young’s modulus of the sleeve, a is the internal
radius of the sleeve, and b its outer radius. �� is the hoop strain
measured on the surface of the sleeve. The specimen is then under
a known stress state since �r=��=−Pc and �z is the stress applied
by the MTS machine. Equivalent stress and pressure in the speci-
men, P, are then easily derived, see, for example, Ref. �14�:

Fig. 1 Experimental setup

Fig. 2 „a… Stress versus axial strain obtained in a typical test
with many load-unload cycles. „b… Stress versus hoop-strain
curve for the same test.

Fig. 3 First loading cycle in test BF-14
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�eq =
1
�2

���r − ���2 + ��r − �z�2 + ��� − �z�2�1/2 = ��r − �z�

�2�

where the shear stresses were assumed to be zero,

P = −
1

3
��r + �� + �z� = −

1

3
�2�r + �z� �3�

Using Eqs. �2� and �3�, a plot of equivalent stress versus pressure
can be constructed from the data recorded during the test. Figure
5�a� shows a typical �eq versus P plot.

Our main interest is to determine the yield strength of the speci-
men as a function of pressure and, particularly, a maximum
strength or cap, if it exists at all. By taking the envelope of the �eq
versus P plot, it is possible to “hide” the large jumps that are due
to internal fractures and slippage. The envelope is formed by con-
necting the stresses, for each load cycle, where a hoop-strain jump
is apparent. Figure 5�b� is the result of taking the envelope for all
six tests shown. The plot implies that there is a cap around
1.8–2.2 GPa, a value in agreement with that published by Partom
�6� �which cites a later publication by Bourne et al. �15��.

4.1 Different Test to Determine the Strength at Zero Pres-
sure Y0. Unfortunately, the test presented above does not allow us
to determine Y0, the strength at zero pressure, with reasonable
accuracy. Y0 is a small number of the order of 100 MPa. However,
it is important to determine Y0 because hydrocode calculations of
penetrators impacting brittle materials show that the final depth of
penetration is very sensitive to this parameter. The reason for the
sensitivity is that if Y0 is assumed to be zero, a failed target then
has no strength. The result is that the projectile cannot be stopped.

The test proposed is compression of the specimen under con-
stant confinement pressure. With this test, determining Y0 is
straightforward. If the specimen is yielding, then the equivalent
pressure ��eq= ��r−�z�� is equal to the yield strength Y =Y0+�P
and, since ��z�� ��r�,

�r − �z = Y0 + �P = Y0 +
�

3
��r + �� + �z� �4�

where �z is the known applied load, �r is the confinement stress,
and ��=�r, see Sec. 5. Since the confinement pressure is, for the
discussion in this section, constant and known �i.e., controlled by

Fig. 4 “Idealized” stress-strain curves used for the interpreta-
tion of the results

Fig. 5 „a… Equivalent stress versus pressure plot for a typical
test. „b… Envelopes for six different tests showing that sample
strength is limited. All the tests shown are confined compres-
sion of predamaged samples.
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a hydraulic system�, let us call it Pc
0�−�r. It is then possible to

write Eq. �4� as

��z�yield =
Y0

�/3 − 1
+

2� + 3

� − 3
Pc

0 �5�

Equation �5� shows that, if the confinement pressure is constant,
yielding will appear as a plateau in the axial stress versus axial
strain curve. It also shows that � and Y0 can be determined by
testing the specimen at two different confinement pressures. Fig-
ure 6 shows the results of three experiments as an example. In this
case, the experiments were only used to determine Y0 since all
were performed at zero confinement pressure. Strength values
found were 130 MPa, 120 MPa, and 70 MPa, which gave, respec-
tively, Y0 values of 52 MPa, 48 MPa, and 28 MPa if the slope of
the Drucker–Prager is assumed to be �=1.8 �a typical slope, as
shown in Fig. 5�. Therefore, the average value and standard de-
viation of Y0 are 43�13 MPa. This value agrees �at least in order
of magnitude� with the 100 MPa value assumed, because of lack
of experimental data, by Walker and Anderson �16� when devel-
oping their penetration model into glass.

5 Full Analytical Model of the Confined Test With Ex-
plicit Elastoplastic Solution

One of the objectives of the analytical model is to obtain the
elastic and plastic constants for the damaged borosilicate speci-
men by using the axial stress versus axial strain and axial stress
versus hoop-strain curves obtained during the characterization
tests. Obtaining the equivalent stress versus pressure curve is also
desired. This is relatively straightforward as was shown in the
previous section. The analytical model also helps us to provide a
complete understanding of the test, in the design of new tests and
in checking the assumptions and interpretation of the results.

The assumptions used in the model are described first. Then,
the incremental equations to completely solve stresses and strains
are presented. Finally, it will be shown how the equations can be
solved explicitly as a function of �z and how the elastic and plastic
constants can be derived from them.

5.1 Assumptions for the Specimen. The specimen is as-
sumed to have an elastoplastic behavior. The elastic part is char-
acterized by the two Lamé constants, � and � �or E and 	�, which,
in principle, are the constants we want to determine with the char-
acterization tests. The plastic part is assumed to be a Drucker–

Prager constitutive model with a cap, where the strength is given
by Y =Y0+�P. Y0 is the tensile strength and P is the hydrostatic

pressure. The strength is capped by the value Ȳ.
The displacement field in the specimen is typical of a solid

cylinder under axisymmetric loading: ur=Aspr, where Asp is a
constant �that depends on the load applied� and r is the radial
coordinate. This implies that the radial stress in the specimen is
constant and that the hoop stress is equal to the radial stress, see
Timoshenko Ref. �13�.

There is no friction between the specimen and the sleeve, i.e.,
the only interaction with the sleeve is through radial stresses.

5.2 Assumptions for the Confining Sleeve. The sleeve is
assumed to be elastic and characterized by the two known Lamé
constants �� and �� for Vascomax steel. The displacement field in
the sleeve is typical of a hollow cylinder under axisymmetric
loading: ur=Ar+B /r, where A and B are constants that depend on
the load applied to the specimen.

5.3 Incremental Equations for the Deformation of the
Specimen. In this section, incremental equations are written that
will explicitly solve all the stresses and strains �both elastic and
plastic� in the specimen while it is deforming.

Given that hoop stress and radial stress are the same in the
specimen, Hooke’s law can be written incrementally as

d�r = 2�� + ��d�r
e + �d�z

e

�6�
d�z = �� + 2��d�z

e + 2�d�r
e

where the superscript e denotes elastic strain.
Since the sleeve is assumed to remain elastic, the confinement

pressure that the specimen sees is proportional to the increase in
the radius of the specimen. The proportionality constant, which
only depends on the elastic constants of the sleeve and the geom-
etry, is called C� and will be calculated in the next section. For
now, since this simplifies the math, let us just write the equation
that relates confinement pressure and radial displacement, assum-
ing C� is known. Recall that the initial radius of the specimen is a,

d�r = C�
dūr

a
�7�

The radial displacement of the outer radius �ūr�ur�r=a�� of
the specimen is related to the radial strain through the following
equation:

dūr = ad��r�r=a �8�

This equation comes from differentiating the engineering defini-
tion of strain, so it assumes small strains:

�r =
r0 + ūr

r0
− 1 �9�

where r0 is the initial radius and r0+ ūr the final radius.
Now, let us write the plasticity part of the equations. Since a

Drucker–Prager model is assumed, the yield strength is given as a
function of the hydrostatic pressure in the specimen by

Y = Y0 + �P �10�

where Y0 and � are the plasticity constants of the damaged speci-
men. If the specimen is flowing plastically, then the equivalent
stress equals the yield strength so that

�eq = ��r − �z� = Y0 −
�

3
��r + �� + �z� �11�

and by differentiating this last equation, given that ��z�� ��r�,

d�r − d�z = −
�

3
�2d�r + d�z� �12�

Fig. 6 Stress versus strain curves for compression of
unconfined-predamaged samples. Confinement pressure in
these samples is zero.
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Finally, the only equations that remain to be written are the
conservation of volume during plastic deformation �so nonassoci-
ated flow is assumed� and the fact that the total strain is found by
adding the elastic �superscript e� and plastic strains �superscript
p�:

2d�r
p + d�z

p = 0 �13�

d�r = d�r
e + d�r

p

�14�
d�z = d�z

e + d�z
p

Equations �6�–�8� and �12�–�14� constitute a set of eight equa-
tions with eight unknowns: d�r, d�r

e, d�r
p, d�z

e, d�z
p, d�r, d�z, and

dūr. Note that d�z, the total strain in the z direction, is the strain
applied to the specimen by the MTS machine and is consequently
known.

Calculation of the Proportionality Constant C�. Since the
sleeve is elastic �and there is no friction�, the relationship between
the confinement pressure provided by the sleeve and the displace-
ment of its inner radius is linear: d�r=C�dūr /a. In this section,
the value of C� is derived.

Again, the departure point is the classical displacement field;
now, in the sleeve, ur=Ar+B /r. A and B are constants that need to
be calculated using the boundary conditions. Since the boundary
conditions change at every increment of d�z, they need to be re-
calculated at every increment. The boundary conditions for the
sleeve are as follows.

• The outer surface of the sleeve is a free surface:

�r�r = b� = 0 �15�
• The radial stress at the specimen/sleeve interface should be

equal on both sides:

�r��r = a��sleeve = �r��r = a��specimen �16�

• The radial displacement at the specimen/sleeve interface
should be equal on both sides:

ur��r = a��sleeve = ur��r = a��specimen �17�

• The axial stress in the sleeve is zero because there is no
friction between the specimen and the sleeve:

��z�sleeve = 0 �18�

The strain tensor is derived from the displacement field with

�r =
�ur

�r
= A −

B

r2

�� =
ur

r
+

1

r

�u�

��
= A +

B

r2 �19�

�z =
�uz

�z

Using Eqs. �19� in Hooke’s law for the sleeve,

�r = ��� + 2����r + ���� + ���z = 2��� + ���A + ��� − 2����B/r2�

+ ���z

�� = ���r + ��� + 2����� + ���z = 2��� + ���A + �− �� + 2���


�B/r2� + ���z �20�

�z = ��� + 2����z + 2���r = 0

The superscript e has been dropped from the equations because
the sleeve is assumed to stay always elastic.

Since �z=0, the axial strain is easily found as a function of the
radial strain:

�z = −
2��

�� + 2��
�r �21�

For the sake of this derivation, ūr is considered a known variable.
Later in the derivation, when coupling of sleeve and specimen
stresses/displacements is done, this assumption will be removed.
Using Eq. �15� and the displacement field assumption, we can
obtain A and B as a function of ūr and the elastic constants of the
sleeve:

�r�r = b� = 2��� + ���A + ��� − 2���
B

b2 + ���−
2��

�� + 2��
	�r = 0

�22�

ūr � ur�r = a� = Aa +
B

a2

Hence, solving the above two equations with two unknowns
�A ,B� yields

A = A�
ūr

a
where A� �

��� + 2���a2

b2�3�� + 2��� + a2��� + 2���
�23�

B = B�
ūr

a
where

B�

a2 �
�3�� + 2���b2

b2�3�� + 2��� + a2��� + 2���
�24�

Now that A and B are known, the radial stress in the inner diam-
eter of the sleeve can be written. From the first equation in Eq.
�20�, C� is then easily derived by using Eq. �7�:

�r�r = a� = C�
ūr

a
= 2��� + ���A + ��� − 2���

B

a2 �25�

So,

C� = 2
��� + ���A� − ��
B�

a2 � �26�

In summary, in this section, C� �as well as A� and B�� has been
written as a function of the elastic constants of the sleeve and its
geometry. Therefore, it can be considered a known constant that
will be used when convenient. The following sleeve variables will
also be known as soon as the system of eight equations presented
in Sec. 5.3 is solved so that ūr is found:

�r�r = a� = C�
ūr

a
or d�r�r = a� = C�

dūr

a
�27�

�r =
�ur

�r
= �A� −

B�

r2 	 ūr

a
or d�r = �A� −

B�

r2 	dūr

a
�28�

�� =
ur

r
= �A� +

B�

r2 	 ūr

a
or d�� = �A� +

B�

r2 	dūr

a
�29�

5.5 Explicit Solution When the Specimen is Deforming
Elastically. We are now ready to write the explicit solution when
the specimen is deforming elastically. Hooke’s law for the speci-
men is

d�r = 2�� + ��d�r + �d�z

d�� = d�r �30�

d�z = �� + 2��d�z + 2�d�r

Recall that �r is not a function of r in the specimen; it is uniform
throughout the specimen. By substituting d�r=C�ūr /a and �see
Eq. �9�� dūr=ad�r in Eq. �30�, we can explicitly write
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d�r =
�

C� − 2�� + ��
d�z �31�

which does not depend on r, as expected from the displacement
field assumed. Since the slope d�z /d�z is used in the analysis of
the data, let us write it explicitly as

�d�z

d�z
	

elastic
=

2�2

C� − 2�� + ��
+ � + 2� �32�

One of the variables that will be needed is the hoop strain in the
outer surface of the sleeve given the axial strain of the specimen.
At this point, it is straightforward to compute it by using Eqs. �7�
and �29�:

d����r
sleeve = �A� +

B�

r2 	dūr

a
= �A� +

B�

r2 	d��r�r=a
specimen �33�

So,

d����r=b
sleeve = �A� +

B�

b2 	d��r�r=a
specimen �34�

5.6 Explicit Solution When the Specimen is Deforming
Plastically. The specimen starts to deform plastically when the
equivalent stress reaches the yield strength. From Eq. �7�, d�r
=C�d�r, and, from Eq. �13� and the second equation in Eq. �14�,

d�r = d�r
e +

d�z
e

2
−

d�z

2
�35�

By using the first equation of Eq. �6�, we get

C�d�r = C�d�r
e +

d�z
e

2
−

d�z

2
= 2�� + ��d�r

e + �d�z
e �36�

From Eq. �12�, d�z=��d�r, where ��= �1+2� /3� / �1−� /3�. So,
the second equation of Eq. �6� becomes

�� + 2��d�z
e + 2�d�r

e = ��C�d�r = 2�� + ��d�r
e + �d�z

e �37�

Equations �36� and �37� allow us to find the relation between d�r
e

and d�z
e:

d�r
e = −

���� − 1� − 2�

���� − 1� + ���

d�z
e

2
� − �d�z

e �38�

where a new variable �, which only depends on material proper-
ties, has been defined to abbreviate notation. Using Eq. �36� again,
it is possible to find d�z

e, the elastic deformation in the z direction
as a function of the total deformation d�z, which is known:

d�z
e = −

C�

2�2��� + �� − � + C��1/2 − ���
d�z � �d�z �39�

Again, a new variable ��� was used to abbreviate notation and
highlight the proportionality between all the unknowns and the
strain applied d�z. All the other unknowns are easily derived from
the last equation, for example, by using Eqs. �38� and �39�, we get

d�r
e = − ��d�z �40�

and with Eq. �35�,

d�r = 
��1

2
− �	 −

1

2
�d�z �41�

The last three unknowns follow:

d�r = C�d�r = C�
��1

2
− �	 −

1

2
�d�z �42�

d�z = ��d�r = ��C�
��1

2
− �	 −

1

2
�d�z �43�

dur = ad�r = a
��1

2
− �	 −

1

2
�d�z �44�

6 Summary: Determination of the Elastic and Plastic
Constants

The analytical model presented in Sec. 5 allows one to easily
calculate the elastic constants of the specimen, E and 	 �or � and
��, and the Drucker–Prager parameter � by solving three equa-
tions with the material constants being the three unknowns. In
fact, if the experimental results are interpreted the way they are
shown in Fig. 4, they provide four slopes, 1, 1�, 2, and 2�, to
match the four equations provided by the model.

1 Slope 1 is the elastic slope of the axial stress versus axial
strain curve:

slope 1 = �d�z

d�z
	

elastic
=

2�2

C� − 2�� + ��
+ � + 2� �45�

where � and � are the Lamé constants for the specimen and
C� is a constant that depends on the elastic properties of the
sleeve and its geometry. See Sec. 5, Eq. �32�, for a complete
explanation.

2 Slope 1� is the elastic slope of the axial stress versus hoop-
strain curve:

slope 1� = �d�z

d��
	

elastic,r=b

=
2�2 + �� + 2���C� − 2�� + ���

��A� + B�/b2�
�46�

where the constants A� and B� are explicitly written in Eqs.
�23� and �24�.

3 Slope 2 is the plastic slope of the axial stress versus axial
strain curve:

slope 2 = �d�z

d�z
	

plastic
= ��C�
��1

2
− �	 −

1

2
� �47�

where ��, �, and � are explicitly written in Sec. 5.6.
4 Slope 2� is the plastic slope of the axial stress versus hoop-

strain curve:

slope 2� = �d�z

d��
	

plastic,r=b

=
��C�

�A� + B�/b2�
�48�

7 Example: Results Obtained With Damaged Borosili-
cate Glass

Full detail of the following results and how they were obtained
will be given in a separate paper. In this paper, the results are just
briefly presented.

Slopes 1, 1�, 2, and 2� were measured for a series of loading
cycles and tests. Equations �45�–�48� were then solved for �, �,
and �. Since there are three unknowns and four equations, the
equations were solved in groups of 3. There were three different
possibilities �two of them give identical solutions� that gave three
slightly different values for the elastic and plastic constants.

The average values and standard deviations are shown in Table
1. Intact and ultrasound measurements are also provided for com-
parison. The modulus changes very little from intact to predam-
aged �thermally shocked� glass. Even when the glass is severely
damaged, as, for example, in a multiple cycle load-unload test, the
average modulus decreases less than 10% when compared to the
modulus of the material determined from MTS data.

The results indicate that the elastic modulus and Poisson’s ratio
are not significantly affected by damage. Post-test evaluation of
the samples �17� shows that after a few cycles, the glass is com-
pletely failed, almost powdered. Stating that highly comminuted
glass has a similar modulus to intact glass is an unexpected result.
Again, it should be emphasized that this is applicable if the ma-
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terial is confined, i.e., the material does not have any space to
move and, consequently, voids are not allowed to open and de-
crease the elastic modulus. During ballistic penetration, inertia
and confinement keep the target material in place for some time. It
can then be argued that even if the material right in front of the
projectile is failed, its elastic modulus is almost unchanged �as
well as its Poisson’s ratio, sound speed, etc.�.

8 Conclusions
Compression of brittle specimens inside a confinement sleeve is

becoming a test commonly found in the literature. The objective
of the test is to find constitutive parameters of brittle materials at
high pressures. The constants can afterward be used in hydrocodes
to predict ballistic behavior �e.g., depth of penetration or ballistic
limit�. An analytical model of the confined test with an explicit
elastoplastic solution was developed to aid in the interpretation of
compression test results and to infer the constants needed. The
analytical model was applied to borosilicate glass. The constants
determined here are in agreement with values previously pub-
lished by other authors using different techniques. Average values
for the elastic modulus and Poisson’s ratio for the glass were
determined, as well as the Drucker–Prager constitutive law.
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E �GPa� 	 � Ȳ �GPa� Y0 �MPa�

Damaged �MTS� 56�5 0.20�0.04 1.8�0.2 1.8�0.3 43�13
Predamaged �ultrasonic� 60�2 0.18�0.02 — —

Intact �MTS� 59�2 0.18�0.01 — —
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Modeling Surface Electrodes on a
Piezoelectric Layer
This paper considers a piezoelectric ceramic layer with a surface electrode. It focuses on
the effect of the layer thickness on the electrode tip fields. A closed-form solution for the
electromechanical fields at the electrode tip is obtained and is expressed in terms of the
applied electric field intensity factor, which can be obtained exactly for infinite layer
thickness and numerically for finite layer thickness. The stress, electric displacement, and
electric field are plotted to show the effect of layer thickness. It is found that the stresses
and field intensities at the electrode tip can be reduced considerably by decreasing the
thickness of the piezoelectric layer, confirming the previous finding. The paper also gives
a solution for two identical and collinear surface electrodes. The relative distance be-
tween the electrodes is observed to have significant influence on the electromechanical
field in the piezoelectric layer. �DOI: 10.1115/1.2775504�

Keywords: piezoelectric materials, electrode, fracture mechanics

1 Introduction
Electroelastic interaction of ceramic materials with electrodes is

of importance in smart material and devices. The electric field in
these materials and devices are usually applied through thin elec-
trodes. Stress and electric field concentrations near crack tips or
electrode tips in piezoelectric ceramics can result in electrome-
chanical degradation. Hence, it is important to study the electric
fields and stress distributions at the edge of electrodes and to
understand the mechanical and electric failure phenomena of the
materials. It has been observed that cracking ahead of the elec-
trode is a common case of failure in many electromechanical de-
vices �1�. A significant body of work has been developed to model
the piezoelectric ceramics with electrodes. Many theoretical
analysis and numerical results have shown that the edge of the
electrode is a potential position of high stress and electric field
concentrations �2–5�. For piezoelectric materials containing mul-
tilayered internal electrodes, electric field and elastic fields in-
duced by quadratic electrostriction have been obtained via the
analytical approach and the finite element method �6,7�. Experi-
mental observation and 3D finite element simulation were made to
explore the electroelastic field concentrations ahead of the elec-
trodes in multilayer piezoelectric actuators �8�.

As shown in Fig. 1 for the electrode configurations investigated
in references, a lot of relevant problems have been solved �9–19�.
However, some results for the straight electrode problem pre-
sented in literature contain some mistakes. Moreover, the actual
structures should always have finite size. This means that study on
a finite electrode on a finite piezoelectric layer is important.
Therefore, it is highly necessary to establish a general model for
the finite layer thickness, from which results for the infinite layer
can also be derived.

This paper focuses on the remaining unsolved problem shown
in Fig. 2, in which an electrode is attached on a piezoelectric layer
of finite thickness �the case of infinite h has been investigated in
Refs. �20,21��. The influence of the layer thickness is studied in
detail. The effect of air surrounding the piezoelectric layer is also
explored. An electric field intensity factor is defined to character-
ize the electrode tip fields. The electrode tip electromechanical
fields are expressed in terms of the electric field intensity factor.
The field intensity factor at the electrode tip, and the electric dis-

placement and electric field on the electrode plane are shown
graphically for different values of layer thickness. Besides the
single electrode configuration, the problem of two collinear sur-
face electrodes is also investigated.

2 Description of the Problem
Let us consider the piezoelectric ceramic layer in Fig. 2. The

poling direction of the medium is parallel to the positive y axis,
where �x ,y� is the coordinate system. The center of the electrode
is directed through the y axis. We investigate a 2D problem such
that all field variables are functions of x and y only. We denote the
displacement along the x and y directions as u and v, respectively,
and the electric potential as �. Constitutive equations for piezo-
electric materials polarized along the y direction can be written as

�
�xx

�yy

�xy

Dx

Dy

� = �
c11 c13 0 0 − e31

c13 c33 0 0 − e33

0 0 c44 − e15 0

0 0 e15 �11 0

e31 e33 0 0 �33

��
�xx

�yy

2�xy

Ex

Ey

� �1�

where �ij and Di �i , j=x ,y� are stresses and electrical displace-
ments; cij, eij, and �ii are elastic constants, piezoelectric con-
stants, and dielectric permittivities, respectively; and �ij and Ei
are, respectively, strains and electrical fields, which are related to
the displacements and electric potential through

�ij = �u,i + u,j�/2 Ei = − �,i �2�

in which �i , j=x ,y�. In the absence of body forces and body
charges, the equilibrium equations for the piezoelectric media are

�ij,j = 0 Di,i = 0 �3�

Equation �3� can be expressed in terms of displacements and elec-
tric potential with the substitution of Eqs. �1� and �2�.

2.1 Electric Boundary Conditions. As shown in Fig. 2, the
medium at y=0 is surrounded by free space �vacuum or air�. The
normal component of the electric displacement vector outside the
electrode region at y=0 and the electric potential in the entire
horizontal axis are continuous so that

Dy�x, 0� = Dy
a�x, 0� x � a �4a�
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��x, 0� = �a�x, 0� x � 0 �4b�

in which the superscript a denotes the field quantities in air. Under
an applied voltage, the electric charge will be accumulated on the
electrode but the electric field inside the electrode should be zero.
We denote the total charge accumulated on the electrode as 2Q0.
Thus, we have

	
0

a

�Dy�x, 0� − Dy
a�x, 0��dx = Q0 x � a �5a�

Ex�x, 0� = Ex
a�x, 0� = 0 x � a �5b�

The assumption of Eq. �5a� is similar to those made in Refs.
�15,16,21�.

In addition, it is assumed that the surface y=h of the piezoelec-
tric medium is grounded so that

��x, h� = 0 �6�

2.2 Mechanical Boundary Conditions. As for the mechani-
cal boundary conditions, we always assume that the boundaries
y=0 and y=h are free from horizontal shear stress. That is,

�xy�x, 0� = 0 �xy�x, h� = 0 �7�

Furthermore, the electrode plane of the piezoelectric layer �the y
=0 plane� is free of normal stress. In addition, it is assumed that
the entire medium does not bend on the z=h plane. These condi-
tions can be written as

�yy�x, 0� = 0 v�x, h� = 0 �8�

3 Solution
The governing equations �3� for the displacements and electric

potential can be expressed in terms of unknown functions Fm�s� as
follows:

�u�x,y�
v�x,y�
��x,y�

� =
2

�
	

0

�



m=1

6 �a1m sin�sx�
a2m cos�sx�
a3m cos�sx�

�exp�s�my�Fmds �9�

where sgn�	� equals 1 for positive values of 	 and −1 for negative
values of 	; �m are eigenvalues, and �a1m ,a2m ,a3m� are eigenvec-
tors of the following characteristic equation:

� c11 − c44�m
2 �c13 + c44��m �e31 + e15��m

�c13 + c44��m c33�m
2 − c44 e33�m

2 − e15

�e31 + e15��m e33�m
2 − e15 �11 − �33�m

2 ��
a1m

a2m

a3m
� = 0

�10�

In Eq. �10�, there are six roots for �m. It can be shown that if
��m , �a1m ,a2m ,a3m�T� is an eigensolution of Eq. �10�, then
�−�m , �−a1m ,a2m ,a3m�T� is also an eigensolution of Eq. �10�. In
what follows, the order of the roots �m are arranged such that
Re��1��0, Re��2��0, Re��3��0 and �4=−�1, �5=−�2, �6=
−�3. Substituting Eq. �9� into the constitutive equations �1�
through Eq. �2�, the stresses and electric displacements can be
obtained as

��xx�x,y�
�yy�x,y�
Dy�x,y�

� =
2

�

m=1

6 	
0

�

s�C1m

C2m

C3m
�exp�s�my�cos�sx�Fmds

�11a�

Fig. 2 A surface electrode on a piezoelectric layer

Fig. 1 Various electrode configurations of reference papers
„the bold lines represent electrodes…. „A… Two external elec-
trodes attached to a piezoelectric layer „Refs. †9,10‡ for anti-
plane problem…. „B… Two internal electrodes between two piezo-
electric layers poled in opposite directions „Ref. †11‡ for anti-
plane problem; Ref. †12‡ for in-plane problem…. „C… Circular
surface electrode of radius a on a piezoelectric layer „Ref. †13‡
for finite h; Ref. †14‡ for infinite h…. „D… An internal electrode
between two piezoelectric half-planes „Refs. †15–17‡…. „E… Two
external electrodes attached to the surfaces of a piezoelectric
layer „Ref. †18‡ gave the results for infinite h…. „F… An internal
semi-infinite electrode between two infinite piezoelectric layers
poled in opposite directions „Ref. †19‡….
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��xy�x,y�
Dx�x,y� � =

2

�

m=1

6 	
0

�

s�D1m

D2m
�exp�s�my�sin�sx�Fmds

�11b�

in which the coefficients Cim and Dim �i=1, . . . ,3; m=1, . . . ,6� are
given in Appendix A.

For the free space �air�, y�0, the electric potential and the
normal component of the electric displacement vector can be ex-
pressed as

�a�x,y� =
2

�
	

0

�

A�s�cos�sx�exp�sy�ds �12�

and

Dz
a�x,y� = − �0

2

�
	

0

�

sA�s�cos�sx�exp�sy�ds �13�

respectively, where �0 is the permittivity of free space �vacuum
or air� and A�s� is an unknown function of s. Equations �12� and
�13� satisfy the condition that the field quantities vanish as y ap-
proaches negative infinity �see Fig. 1�.

From the fact that the electric potential is continuous along the
entire y=0 plane �Eq. �4b��, we obtain

A�s� = 

m=1

6

a3mFm�s� �14�

we define the following electric displacement discontinuity:

g�x� = Dy�x, 0� − Dy
a�x, 0� �15�

Thus, g�x� represents the electric charge accumulated on the y
=0 plane. It follows from Eqs. �11a�, �13�, and �14� that

g�x� =
2

�

m=1

6

�C3m + �0a3m�	
0

�

s cos�sx�Fm�s�ds �16�

Since the normal component of the electric displacement vector is
continuous �the first equation of Eq. �4��, the function g�x� is zero
out of the electrode region. The inversion of Eq. �16� yields



m=1

6

�C3m + �0a3m�Fm = s−1	
0

a

g�r�cos�sr�dr �17�

Through the boundary conditions �6�–�8� and with Eq. �17�, it can
be shown that the unknowns Fm�s� are related to the function g�r�
as

Fm�s� = Bm�s�s−1	
0

a

g�r�cos�sr�dr �18�

where m=1, . . . ,6 and �B1 ,B2 ,B3 ,B4 ,B5 ,B6�T is the first column
of 6
6 matrix �Z�:

�Z� = �
C3j + �0a3j

C2j

D1j

a3j exp�s� jhj�
a2j exp�s� jhj�
D1j exp�s� jhj�

�
−1

�j = 1, . . . ,6� �19�

In order to use the boundary condition for the electric field
inside the electrode, we write the electric field on the y=0 plane
by differentiating the electric potential �Eq. �9�� with x and sub-
stituting Eq. �18� into it. This gives

Ex�x, 0� =
2

�
	

0

a

g�r�cos�sr�dr	
0

�

G�s�sin�sx�ds �20�

wher

G�s� = 

m=1

6

a3mBm�s� �21�

When s approaches infinity, the function G�s� has an asymptotic
value G0. Equation �20� can be rewritten as

Ex�x, 0� =
2

�
	

0

a

g�r�cos�sr�dr	
0

�

G0 sin�sx�ds

+
2

�
	

0

a

��x, r�g�r�dr �22�

where the integral kernel ��x ,r� is

��x,r� =	
0

�

�G�s� − G0�sin�sx�cos�sr�ds �23�

Equation �22� can be further transferred to

Ex�x, 0� =
G0

�
	

0

a  1

x + r
+

1

x − r
�g�r�dr +

2

�
	

0

a

��x,r�g�r�dr

�24�

This is a standard singular integral equation whose solution can be
expressed as �22�

g�r� = ḡ�r�/�a2 − r2 �25�

where ḡ�r� is a bounded function in the interval �0,a�. It can be
seen from Eq. �25� that the electric charge accumulated on the
electrode is singular at the electrode tips x= �a. Because the
medium is finite, g�r� can only be obtained numerically. We ex-
press g�r� in terms of the Chebyshev polynomial of the first kind
Tm�r /a� as follows:

ḡ�r� = 

m=0,2,4,. . .

�

CmTm r

a
� �26�

where Cm are unknown coefficients to be determined. For x�a
the boundary condition �5b� results in a singular integral. By sub-
stituting Eq. �25�, truncated with the first M +1 terms in Eq. �26�,
into Eq. �24� and using the integral formulas �23�

1

�
	

−1

1
Tm�r�

�r − x��1 − r2
dr

= �
Um−1�x� m  1 �x� � 1

−
sgn�x�
�x2 − 1

�x − sgn�x̄��x2 − 1�m m  0 �x� � 1

0 m = 0 �x� � 1
�

�27�

we obtain

−
G0

a 

m=2,4,. . .

2M

CmUm−1 x

a
� + 


m=0,2,4,. . .

2M

CmVm�x� = 0 x � a

�28�

where Um−1 is a Chebyshev polynomial of the second kind and Vm
is
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Vm�x� =
2

�
	

0

a
��x,r�Tm�r/a�

�a2 − r2
dr �29�

In order to obtain a nonzero solution from Eq. �28�, the as yet
unused Eq. �5a� can be considered. It follows that

	
0

a

g�r�dr = Q0 �30�

With the substitution of Eqs. �25� and �26�, Eq. �30� gives

C0 =
2

�
Q0 �31�

Submitting Eq. �31� into Eq. �28�, we obtain a system of algebraic
equations for the remaining coefficients C2 ,C4 , . . .,

G0

a 

m=2,4,. . .

2M

CmUm−1 x

a
� − 


m=2,4,. . .

2M

CmVm�x� =
2

�
Q0V0�x� x � a

�32�

The algebraic equation �32� for Cm can be solved numerically by
standard computer procedures �e.g., the collocation technique�.
Once Cm are determined, the function g�r� can be found from Eqs.
�25� and �26�. Then the functions Fm can be determined from Eq.
�18�. To this end, the full field solution is obtained.

From Eqs. �24� and �27�, we can obtain the horizontal electric
field out of the electrode region at the y=0 plane:

Ex�x, 0� = G0
1

�x2 − a2 

m=0,2,4,. . .

2M

Cm� x

a
− ��x/a�2 − 1�m

+ 

m=0,2,4,. . .

2M

CmVm�x� �33�

The above equation is obtained by substituting Eqs. �25�–�27� into
Eq. �24�. Obviously, the horizontal electric field is singular ahead
of the electrode tip. If we define the electric field intensity factor

KE = lim
x→a+0

�2��x − a�Ex�x, 0� �34�

then

KE = G0
��/a 


m=0,2,4,. . .

2M

Cm �35�

or

KE =
2

��a
G0Q0 +��

a
G0 


m=2,4,. . .

2M

Cm �36�

Having obtained the auxiliary function g�r�, the coefficient
Fm�s� can be determined from Eq. �18�. As a result, the full field
solution is determined. For the infinite medium, the problem can
be solved in closed form as given in Appendix B. The electrode
tip field has been expressed in terms of the electric field intensity
factors by Eqs. �B8� and �B9�. Since the piezoelectric layer
boundary y=h will not affect the qualitative character of the state
of affairs near the electrode border, the local stresses, electric
displacements, and electric fields for r→0 �see Fig. 2� should be
the same as those given by Eqs. �B8� and �B9� for an infinite
piezoelectric medium. The electric field intensity factor, however,
should now read as Eq. �35�.

4 Two Collinear Electrode
In formulating the problem, the condition of symmetry with

respect to x=0 was assumed with regard to the electrode geom-
etry. Thus, the electric field equation �24� derived in Sec. 3 is valid
basically for any number of electrodes in the y=0 plane symmetri-

cally located with respect to x=0. That is, the electrodes are de-
fined by �y=0, bj �x�cj� and �y=0, −cj �x�−bj�, in which j
=1, . . . ,n, with the following additional condition:

	
−cj

−bj

�Dy�x, 0� − Dy
a�x, 0��dx =	

bj

cj

�Dy�x, 0� − Dy
a�x, 0��dx

= 2Qj0 �37�
As an example, we consider the case of two symmetrically

located collinear electrodes �Fig. 3�. That is, we assume that b1
=b, c1=c, b2=−c, c2=−b, b�x�c. Each electrode is charged
with 2Q0. In this case, using the symmetry conditions, Eq. �24�
should be modified as

Ex�x, 0� =
G0

�
	

b

c  1

x + r
+

1

x − r
�g�r�dr +

2

�
	

b

c

��x,r�g�r�dr

�38�

Note that in this case, the auxiliary function g�r� is defined in the
interval �b ,c�. Equation �38� can be normalized to

Ex�x, 0� =
G0

�
	

−1

1  1

x̄ − r̄
�g�r�dr̄ +

2a

�
	

−1

1

�1�x,r�g�r�dr̄

�39�

where

x = ax̄ + �c + b�/2, r = ar̄ + �c + b�/2 a = �c − b�/2 �40�

�1�x,r� =
G0

2

1

x + r
+ ��x,r� �41�

In this case, the solution of g�r� can be expressed as

g�r� =
1

a�1 − r̄2 

m=0,1,2,. . .

�

CmTm�r̄� �42�

By substituting Eq. �42�, truncated with the first M +1 terms, into
Eq. �39� and using the integral formulas in Eq. �27�, we obtain

−
G0

a 

m=1,2,. . .

M

CmUm−1�x̄� + 

m=0,1,2,. . .

M

CmVm�x� = 0 x � a

�43�

where Um−1 is a Chebyshev polynomial of the second kind and Vm
is

Vm�x� =
2

�
	

−1

1
�1�x,r�Tm�r̄�

�1 − r̄2
dr̄ �44�

The fact that the electrode is charged with 2Q0 can be written as

Fig. 3 Two symmetric surface electrodes; electrode length
2a=c−b; electrode center of the right electrode is at d= „c
+b… /2
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b

c

g�r�dr = 2Q0 �45�

With the substitution of Eq. �42�, Eq. �45� gives

C0 =
2

�
Q0 �46�

Substituting Eq. �46� into Eq. �43�, we obtain a system of alge-
braic equations for the remaining coefficients C1 ,C2 , . . .,

G0

a 

m=1,2,. . .

M

CmUm−1�x̄� − 

m=1,2,. . .

M

CmVm�x� =
2

�
Q0V0�x� b � x � c

�47�

The algebraic equations for Cm can be solved numerically in a
similar way as Eq. �32�. Once Cm are determined, the function
g�r� can be found from Eq. �42�. From Eq. �39�, one can obtain
the horizontal electric field out of the electrode region on the x
axis:

Ex�x, 0� = G0
sgn�x̄�

a�x̄2 − 1



m=0,1,2,. . .

M

Cm�x̄ − sgn�x̄���x̄�2 − 1�m

+ 

m=0,1,2,. . .

M

CmVm�x� �48�

The electric field intensity factor in this case is defined as

KE�c� = lim
x→c+0

�2��x − c�Ex�x, 0� for electrode tip x = c

�49a�

KE�b� = − lim
x→b−0

�2��b − x�Ex�x, 0� for electrode tip x = b

�49b�

The negative sign in Eq. �49b� is introduced so that the electric
field intensity factor is positive for an electric field directing to the
negative x axis at the left electrode tip. From Eqs. �48� and �49�,
we have

KE�b� =
2

��a
G0Q0 +��

a
G0 


m=1,2,. . .

M

�− 1�mCm �50a�

KE�c� =
2

��a
G0Q0 +��

a
G0 


m=1,2,. . .

M

Cm �50b�

5 Numerical Example
Numerical results have been obtained for PZT-4 piezoelectric

ceramics. The material constants are given in Table 1 �24�. The
poling axis of the material is aligned in the positive y direction. In
Sec. 5.1 and 5.2, the problems of single electrode and two collin-
ear electrodes will be considered separately.

5.1 Single Electrode. From the formulation of the problem, it
is clear that air �or vacuum� surrounding the y=0 plane influences
the solution of the response of the piezoelectric medium only
through the quantities G0 and C3j +�0a3j �j=1, . . . ,6�. These
quantities change the solution of the auxiliary function g�x�
through Eq. �24�. They further change the solution of the expres-
sions Fm�s� through Eq. �17�. Hence, to understand the effect of
air �or vacuum�, it suffices to study the values of G0 and C3j +
�0a3j for two cases: �1� taking into account the air �or vacuum�
and �2� ignoring the air �or vacuum�. Table 2 lists the ratios of �1�
to �2�. It can be seen that these ratios are almost equal to 1 �rela-
tive error less than 0.1%�. This means that air �vacuum� has little
effect on the response of its surrounding piezoelectric ceramics.

The vertical component of the electric displacement vector on
the electrode plane immediately above the electrode �that is,
Dy�x ,0�� is plotted in Fig. 4 for selected values of layer thickness.
Note that Dy�x ,0� is identical to zero for x�a if the effect of air
�vacuum� is ignored. However, even if air �vacuum� is considered,
Dy�x ,0� is still almost equal to zero for x�a. It can be seen that
on the electrode plane behind the electrode tip �that is, x�a�,
Dy�x ,0� increases quickly as x approaches a and exhibits singu-
larity when x→a. This means that charges are highly accumulated
at the electrode tip. Further, as the layer thickness decreases, the
distribution of Dy along the electrode plane becomes more uni-
form, resulting in less severity of the electric charge concentration

Table 1 Elastic constants „1010 N/m2
…, piezoelectric constants „C/m2

…, and dielectric permit-
tivities „10−10 C/V m…

Elastic constants
�1010 N /m2�

Piezoelectric constants
�C /m2�

Dielectric
permittivities

�10−10 C /V m�

Materials c11 c12 c13 c44 c33 e31 e33 e15 �11 �33
PZT-4 13.9 7.78 7.43 2.56 11.3 −6.980 13.84 13.44 60.0 54.7

Table 2 Ratios of the material properties C3j+�0a3j and G0 con-
sidering the existence of air „vacuum… and ignoring air
„vacuum…

�C3j +�0a3j� /C3j 0.999583−0.000658i
0.999583+0.000658i

1.000326
1.000413+0.000658i
1.000413−0.000658i

0.999673

G0�with air�

G0�without air�

0.999226
Fig. 4 Electric displacement Dy„x ,0… on the electrode plane
above the electrode, Dy is zero for x>a; D0=Q0 /a
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at the electrode tip.
Some results for the horizontal electric field on the electrode

plane are displayed in Fig. 5 for selected values of layer thickness.
The electric field is zero on the electrode plane behind the elec-
trode tip �that is x�a�. For any given electrode spacing, the elec-
tric field is a continuous function of x ahead of the electrode. As
expected, Ex�x ,0� becomes infinity ahead of the electrode tip.
Ex�x ,0� decreases monotonously with increasing x and becomes
zero when x is very far away from the electrode tip. It can be seen
that the electric field for the finite medium is always smaller than
that for the infinite medium. Decrease of the layer thickness can
significantly reduce the field quantities near the electrode tip.

Figure 5 has clearly shown that the electric field is infinite at the
electrode tip. This behavior can be described by the electric field
intensity factor, defined by Eq. �34�. The electric field intensity
factor KE as a function of layer thickness is plotted in Fig. 6. The
results are normalized with 2G0Q0 /��a, which is the electric
field intensity factor for infinite layer thickness. It is evident that
KE decreases rapidly with decreasing layer thickness. Therefore,
from the standpoint of fracture mechanics, thin electrode-
piezoelectric layer is more reliable than thick electrode-
piezoelectric layer.

In fracture evaluation of materials, the “cleavage” stress ��� is
important since it can be used to assess possible crack initiation.
Given the stress components �xx, �xy, and �yy near the electrode
edge, the cleavage stress ��� is expressed as

��� = �yy cos2 � − 2�xy cos � sin � + �xx sin2 � �51�

Figure 7 displays the variation of ��� with angle � near the elec-
trode tip. The maximum value of ��� does not occur perpendicular
to the electrode plane �the plane �=90 deg is perpendicular to the
electrode plane�. Obviously, the stress at the electrode tip de-
creases significantly with decreasing layer thickness. The infinite
medium solution reported in the literature is the limited case. In
actual structures, the stress should be less than that for the infinite
medium solution. Once again, Fig. 7 supports the fact that reduc-

tion in layer thickness if favorable to the reliability of the struc-
ture. Structural reliability design based on infinite layer thickness
is too conservative.

5.2 Two Collinear Electrodes. For the collinear electrode
problem of Fig. 3, the main concern is the effect of the electrode
spacing. In Fig. 8, the normal component of the electric displace-
ment vector immediately above the electrode is plotted for se-
lected values of electrode spacing b /a=2, 1, 0.5, 0.2, and 0.02. It
can be seen that Dy near the inner tip �x=b� is always smaller than
that near the outer tip. This means that the electric charges are
more accumulated at the outer electrode tip. As a result, the elec-
tric field intensity factor at the outer tip of the electrode should be
higher than that at the inner tip. This is confirmed by the results of
Fig. 9 where the electric field intensity factors are plotted as a
function of electrode spacing for selected values of layer thick-
ness. When the two electrodes are very close, there are consider-
able differences between the results for the outer tip and the inner
tip. When the two electrodes are almost contacted �i.e., b→0�, the
electric field intensity factor for the inner tips approaches zero and
the electric field intensity factor for the outer tips becomes the

Fig. 5 Electric field Ex„x ,0… on the electrode plane ahead of
the electrode; Ex is zero for x<a; E0=Q0 / „a«33…

Fig. 6 Electric field intensity factor at the electrode tip as a
function of layer thickness; K0=2G0Q0 /��a is the intensity fac-
tor for infinite layer thickness

Fig. 7 Distributions of cleavage stress ��� with angle; �0
=e33Q0 /«33a

Fig. 8 Electric displacement Dy„x ,0… above the right electrode
for the collinear electrode problem shown in Fig. 3. Out of the
electrode region on the y=0 plane, Dy is zero. D0=Q0/a and h
=a.

Fig. 9 Electric field intensity factor at the electrode tips as
functions of the layer thickness for the collinear electrodes
shown in Fig. 3; K0=2G0Q0 /��a
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value for a single electrode of length 4a. On the other hand, if the
two electrodes are sufficiently separated from each other �i.e., b
�a�, the inner tip and the outer tip of the electrode have the same
electric field intensity factor, which is equal to the value of a
single electrode of length 2a. As an example, we check the results
for infinite layer thickness. As b approaches zero, the electric field
intensity factor for the inner tip becomes zero and that for the
outer tip becomes the known value KE�c� /K0=�2. As b ap-
proaches infinity, the electric field intensity factors for the inner
and the outer tips have the same value of KE�b� /K0=KE�c� /K0
=1. The curves shown in Fig. 9 support these facts.

6 Conclusion
The linear electroelastic problem for a piezoelectric ceramic

layer with a surface electrode and two collinear surface electrodes
are studied. The stresses, electric fields, and electric displacements
near the electrode tip are obtained. The electrode tip singularity is
characterized by the electric field intensity factor. The analysis
shows that the stresses and electric field intensities decrease with
the decreasing layer thickness. On the electrode plane, the vertical
electric displacement is singular behind the electrode tip and van-
ishes ahead of the electrode front. Conversely, the horizontal elec-
tric field on the electrode plane is singular ahead of the electrode
tip but becomes zero behind the electrode tip. The relative dis-
tance between two collinear electrodes has a significant influence
on the electrode tip field. The decreasing distance weakens the
quantities near the inner tips of the electrodes but strengthens the
quantities near the outer tips of the electrodes. It is also found that
the effect of air �vacuum� surrounding the piezoelectric layer on
the electromechanical fields inside the piezoelectric layer is neg-
ligible.
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Appendix A: Material Constants
The coefficients Cim and Dim �i=1,2 ,3; m=1, . . . ,6� are

�
C1m

C2m

C3m

D1m

D2m

� =�
c11

c13

e31

c44�m

e15�m

�a1m +�
c13�m

c33�m

e33�m

− c44

− e15

�a2m +�
e31�m

e33�m

− �33�m

− e15

�11

�a3m

�A1�
These coefficients have the relationships

Ci�3+j� = − Cij Di�3+j� = Dij �A2�

in which i , j=1,2 ,3.

Appendix B: Electrode Tip Field
In order to obtain the quantities very near the electrode tip, it

suffices to consider the infinite medium, that is, h→�. In this
situation, the functions Bm obtained from Eq. �19� vanish for m
=4,5 ,6 and become constants Bm0 for m=1,2 ,3. Consequently,
G�s� defined in Eq. �21� becomes a constant G0, which is G0

=
m=1
3 a3mBm0. As a result, the integral kernel ��x ,r�=0. It fol-

lows from Eq. �32� that Cm=0 for m�0. Thus,

g�r� =
2

�
Q0/�a2 − r2 �B1�

Substituting Eq. �B1� into Eq. �18�, we obtain

Fm�s� = s−1Bm0Q0J0�sa� �B2�

where J0 is the zero-order Bessel function of the first kind. Sub-
stituting Eq. �B2� into Eq. �11� and using the known results

	
0

�

exp�s�my�J0�sa�cos�sx�ds =
�l2

2 − x2

l2
2 − l1

2 �B3a�

	
0

�

exp�s�my�J0�sa�sin�sx�ds =
�x2 − l1

2

l2
2 − l1

2 �B3b�

in which Re��my��0 and

l1 =
1

2
���x + a�2 + �m

2 y2 − ��x − a�2 + �m
2 y2� �B4a�

l2 =
1

2
���x + a�2 + �m

2 y2 + ��x − a�2 + �m
2 y2� �B4b�

we obtain the full expressions for the stress and electric displace-
ment field inside the medium,

��xx�x,y�
�yy�x,y�
Dy�x,y�

� =
2

�
Q0


m=1

3

Bm0�C1m

C2m

C3m
��l2

2 − x2

l2
2 − l1

2 �B5a�

��xy�x,y�
Dx�x,y� � =

2

�
Q0


m=1

3

Bm0�D1m

D2m
��x2 − l1

2

l2
2 − l1

2 �B5b�

In addition, the electric field is obtained as follows:

Ex�x,y� =
2

�
Q0


m=1

3

Bm0a3m

�x2 − l1
2

l2
2 − l1

2 Ey�x,y�

= −
2

�
Q0


m=1

3

�mBm0a3m

�l2
2 − x2

l2
2 − l1

2 �B6�

The physical quantities near the electrode front are particularly
interesting. We Introduce the polar coordinate system �r ,�� in Fig.
2 in the following manner:

x = a + r cos �, y = r sin � �B7�

Substituting this into Eqs. �B5� and �B6�, the quantities for a very
small value of r are obtained as

��xx�r,��
�yy�r,��
Dy�r,��

� =
KE

��rG0


m=1

3

Bm0�C1m

C2m

C3m
���cos2 � + �m

2 sin2 � − cos �

2��cos2 � + �m
2 sin2 ��

�B8a�

��xy�r,��
Dx�r,�� � =

KE

��rG0


m=1

3

Bm0�D1m

D2m
���cos2 � + �m

2 sin2 � + cos �

2��cos2 � + �m
2 sin2 ��

�B8b�

and

Ex�r,�� =
KE

��r

��cos2 � + �m
2 sin2 � + cos �

2��cos2 � + �m
2 sin2 ��

�B9a�
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Ey�r,�� = −
KE

��rG0


m=1

3

�mBm0a3m

��cos2 � + �m
2 sin2 � − cos �

2��cos2 � + �m
2 sin2 ��

�B9b�
where

KE = lim
r→0

�2�rEx�r,0� =
2

��a
G0Q0 �B10�

is the electric field intensity factor for infinite piezoelectric me-
dium. The singularity at the electrode tip is obvious. For example,
the stresses �xx and �yy, the electric displacement Dy, and the
electric field Ey are singular at the electrode plane behind the
electrode tip �i.e., �=�� but are not singular at the electrode plane
ahead of the electrode tip �i.e., �=0�. In contrast, the stress �xy,
the electric displacement Dx, and the electric field Ex are not sin-
gular at the electrode plane behind the electrode tip �i.e., �=�� but
singular at the electrode plane ahead of the electrode tip �i.e., �
=0�.
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Multiscale Modeling of Adsorbed
Molecules on Freestanding
Microfabricated Structures
This paper outlines a multiscale model to quantitatively describe the chemomechanical
coupling between adsorbed molecules and thin elastic films. The goal is to provide clear,
quantitative connections between molecular interactions, adsorption distribution, and
surface stress, which can be integrated with conventional thin film mechanics to quantify
device performance in terms of molecular inputs. The decoupling of molecular and con-
tinuum frameworks enables a straightforward analysis of arbitrary structures and defor-
mation modes, e.g., buckling and plate/membrane behavior. Moreover, it enables one to
simultaneously identify both chemical properties (e.g., binding energy and grafting den-
sity) and mechanical properties (e.g., modulus and film geometry) that result in chemi-
cally responsive devices. We present the governing equations for scenarios where inter-
actions between adsorbed molecules can be described in terms of pair interactions. These
are used to quantify the mechanical driving forces that can be generated from adsorption
of double-stranded DNA and C60 (fullerenes). The utility of the framework is illustrated
by quantifying the performance of adsorption-driven cantilevers and clamped structures
that experience buckling. We demonstrate that the use of surface-grafted polyelectrolytes
(such as DNA) and ultracompliant elastomer structures is particularly attractive since
deformation can be tuned over a very wide range by varying grafting density and chemi-
cal environment. The predictions illustrate that it is possible to construct (1) adsorption-
based tools to quantify molecular properties such as polymer chain flexibility and (2)
chemically activated structures to control flow in microfluidic devices.
�DOI: 10.1115/1.2793130�

Keywords: adsorption, pair potentials, chemical actuation, microfabrication

1 Introduction

Adsorption of molecules onto freestanding microfabricated can-
tilevers is an emerging technique for chemical sensing, in particu-
lar, with regard to biomolecules such as DNA, antibodies, and
biotinylated species �e.g., see reviews �1–4��. The central concept
is to induce mechanical deformation by molecular interactions on
the surface, as illustrated in Fig. 1. Using highly compliant free-
standing structures as substrates, ultrasensitive detectors can be
obtained. Depending on the chosen surface chemistry, they can
either be broadly responsive, or highly chemically selective, indi-
cating the presence of an analyte by mechanical deflection. For
example, if single strands of DNA �ss-DNA� are end adsorbed
onto the surface of a compliant structure, the system becomes
selective for complementary strands in solution. Hybridization
leads to a conformation change �i.e., randomly coiled ss-DNA to
helical double-stranded DNA �ds-DNA��, which changes the in-
teraction of adsorbed molecules and leads to a measurable defor-
mation of the cantilever. The degree of chemomechanical cou-
pling is naturally quite sensitive to grafting density and the details
of the molecular interactions, such as hydration repulsion,
screened electrostatic repulsion, and steric fluctuations. �1�.

While much of the underlying physics has been explored, the
translation of molecular surface interactions to a generally appli-
cable continuum framework has yet to be established. A complete
modeling of the phenomenon poses a multiscale challenge: While

the interactions among adsorbed groups and the adsorption pro-
cess demand a molecular description, the deformation of the elas-
tic substrate is most effectively treated in terms of continuum
mechanics. This paper outlines the general relationships between
molecular interactions and structural deformation in such a way
that it decouples the chemical and mechanical frameworks needed
to quantify behavior. The approach provides a clear path to trans-
lating molecular interaction parameters into quantities that are
compatible with conventional continuum mechanics models to
predict general device performance.

As such, the framework presented here subsumes previous
work limited to cantilever geometry �e.g., Refs. �5,6�� and exploits
the generality of the modeling approach to quantify other types of
adsorption and device geometry. For example, if the chemome-
chanical coupling observed for sensing applications can be en-
hanced, one can envision using molecular adsorption to create
chemically activated fluidic control elements in micro-total-
analysis-systems ��-TAS�. Figures 1�a� and 1�b� are a schematic
illustration of a chemically activated microfluidic check valve,
i.e., the use of a cantilever suspended at the junction of two mi-
crochannels. The design of such devices requires a complete and
general quantitative framework to predict their performance, flex-
ible enough to accommodate a broad range of molecular interac-
tion types as well as any conceivable device geometry.

In order for chemically activated fluidic control elements of this
type to be realized, the submicron displacements typical of
silicon-based cantilevers must be enhanced considerably. This can
be achieved by increasing the compliance of the cantilever via the
use of either polymers �7� or nanoporous metals �8,9�. Moreover,
specific sensing strategies that generate particularly large surface
stresses can be developed, for example, by using self-assembled
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polymer brushes �10,11�.1 Figures 1�c� and 1�d� illustrate a pos-
sible implementation of both concepts; here, a clamped elastomer
film is coated with a polyelectrolyte brush. At high salt concen-
trations surrounding the brush, electrostatic interactions are
heavily screened, such that surface stress is low. As the salt con-
centration is reduced, the surface stresses rise and deform the
membrane to allow fluid exchange between adjacent networks.

As will be detailed, the present framework allows one to estab-
lish the molecular parameters, material properties, and dimensions
needed to achieve this functionality. Thus, one can simultaneously
establish quantitative goals for both surface functionalization and
microfabrication. The first half of this paper describes the molecu-
lar concepts and parameters needed to quantify the surface stress
generated via molecular adsorption. We first demonstrate basic
relationships between stresses generated via adsorption and bind-
ing energy, molecular interactions, grafting density, and molecular
arrangement. The second part of the paper then utilizes those re-
lationships to explore device performance, using well-established
models of molecular interactions between double-stranded DNA,
on the one hand, and buckminsterfullerene �C60�, on the other. We
demonstrate that the use of microfabricated freestanding elasto-
meric structures opens new avenues to chemically activated mi-
crodevices, as well as new tools for molecular characterization.

2 Mechanics Framework

2.1 Molecular Description and Adsorption. The free energy
change upon adsorption of a molecule from solution can be writ-
ten as follows �Begley et al. �14��:

�� = kT ln���1 − c�
c�1 − ��� − ��B + ��I �1�

where k is Boltzmann’s constant, T is the temperature, c is the
volume fraction of molecules in solution,2 � is the fraction of

occupied surface, ��B is the binding energy of an isolated mol-
ecule, and ��I is the energy that arises from the interaction be-
tween adsorbed species. In equilibrium, ��=0; thus, Eq. �1� can
be used to estimate the grafting density as a function of solution
concentration, binding free energy, and molecular interactions.

As an illustration, consider a scenario where �i� the binding
sites and subsequent adsorption have a hexagonal arrangement
and �ii� molecular interactions are governed by a short-range po-
tential, such that considering only nearest-neighbor interactions is
reasonable. For simplicity, the molecular pair potential is assumed
to be ��r�=�0 exp�−r /r0� /�r /r0, where r is the separation be-
tween molecules, and �o and ro are the parameters controlling the
amplitude and decay length of the potential. For the hexagonal
geometry, the number density of potential binding sites is �b

=1 /�3dB
2 , where dB is the distance between adjacent sites in the

lattice. Similarly, the number density of adsorbed molecules is �

=1 /�3d2, where d is the distance between adsorbed molecules.
Considering only nearest neighbors on a hexagonal grid implies

three pair interactions per molecule, such that the equilibrium sur-
face coverage is governed by the solution to

ln� d2�1 − c�
c�d2 − dB

2�
� − ���B

kT
� + 3��0

kT
�exp�− d/r0� = 0 �2�

Figure 2 illustrates the resulting relationship between grafting
density and binding energy for concentrations that span nine or-
ders of magnitude. Here, we have chosen to plot grafting density
�as opposed to effective spacing�, as this quantity is often mea-
sured via fluorescence spectroscopy �e.g., Ref. �12��.

The chosen molecular interaction parameters, �o and ro, are
based on the empirical constants determined by Strey et al. �13�
for nematically ordered ds-DNA in 1M monovalent salt solution.
The interaction between DNA strands is well described by the
sum of two repulsion terms of the above form, one representing
hydration and the other electrostatic repulsion. In 1M salt solu-
tion, the length scales associated with these two terms are about
equal �Strey et al. �13��. As will be discussed in Sec. 3, the pa-
rameters of Strey et al. must be multiplied by the length of the
molecules: Here, we have chosen ds-DNA with 40 base pairs. The
range of grafting densities shown in Fig. 2 is typical of DNA
adsorption studies, i.e., 0.01–0.1 nm−2 �e.g., Refs. �5,12��. For
reference, the binding energy associated with Au–S bonds utilized
in gold-thiol chemistry is �160 kJ, or �76 kT at room tempera-
ture. For the chosen parameters, the adsorption spacing is much
larger than binding site spacing; this implies that the adsorption is
not limited by the availability of binding sites.

The results in Fig. 2 predict that for sufficiently low solution

1For charged �i.e., polyelectrolyte� brushes, the surface stress in the adsorbed
layer driving deformation increases with increasing molecular length, as will be
illustrated later.

2For ds-DNA in water, the relationship between volume fraction and molarity is
roughly c	�0.64 l /mol�NbpM, where Nbp is the number of base pairs and M is the
number of moles of DNA per liter.

Fig. 1 Schematic illustrations of chemically activated struc-
tures to control fluid motion †„a… and „b…‡. Top view of a canti-
lever suspended at a junction of two microfluidic channels. †„c…
and „d…‡. Side view of a conventional microfluidic valve span-
ning two chambers: The Value is functionalized with polyelec-
trolyte surface and actuated by controlling electrostatic
screening in the top reservoir.

Fig. 2 Predictions of grafting density versus binding energy
for nearest-neighbor repulsion using parameters appropriate
for Debye screening of short DNA „40 bp…. The molecular pair
potential is given by �„r…=�oe−r/ro /�r /ro.
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concentrations, there is a critical binding energy required to over-
come entropic effects. For sufficiently large binding energies,
dense surface coverage is achieved once a critical concentration of
molecules in solution is reached. Section 3 provides a more de-
tailed examination of adsorption density for interactions that in-
volve screened electrostatic repulsion, hydration repulsion, and
thermal bending fluctuations of the DNA strands. �See Fig. 7,
which predicts grafting density for ds-DNA as a function of salt
concentration in the solution.�

2.2 Translation to Continuum Variables: Surface Stress
and Adsorbed Modulus. Begley et al. described how the interac-
tion energy ��I can be used to derive the surface stress induced
by molecular adsorption �14�. The adsorbed molecules comprise a
two-dimensional elastic solid with the constitutive relation,

�ij = ��0 + �0�kk
S �	ij + 2��0 + �0��ij

S �3�

where �ij
S is the strain tensor describing deformation of the surface

onto which the molecules are adsorbed. For a pairwise interaction
between the adsorbed molecules, the isotropic surface stress con-
tribution is given by

�0 =

�2

4 

0

�

r2g�r����r�dr �4�

where � is the number density �molecules per unit area� of ad-
sorbed groups, g�r� is a pair correlation function that describes the
molecular arrangement of particles,3 and ��r� is a pair potential
that describes the interaction between two molecules. The prime
denotes differentiation with respect to r. The second constant re-
lates to the effective modulus of the adsorbed groups and is given
by

�0 =

�2

16 

0

�

r3g�r�����r� −
���r�

2r
�dr �5�

For short-range potentials that decay sufficiently rapidly over
lengths comparable to the characteristic spacing of the molecules,
it is reasonable to assume that only nearest-neighbor interactions
factor into the integrals in Eqs. �4� and �5�. This limit can be
treated by replacing the pair correlation function with a single
delta peak at the characteristic spacing, d. In this approach, the
“nearest-neighbor correlation function” gn�r� is defined according
to



0

�

2
�gn�r�rdr = N �6�

where N is the number of nearest neighbors �or coordination num-
ber�. This yields the normalization,

gn�r� =
N

2
�d
	�r − d� �7�

Of course, there is a relationship between the surface density �
and the nearest-neighbor spacing d. Generally, �=1 / ��d2�; the
proportionality factor � is of order unity and depends on the ge-
ometry of the lattice. The proportionality factor is found by con-
sidering the Voronoi polygon around each molecule, which is de-
fined as the set of points in the plane that are closer to the
molecule under consideration than any other. Table 1 gives the
relevant parameters for lattices of different symmetries. A random
arrangement may be treated by choosing a coordination number
between �5� and �6�, and � close to unity.

Thus, in the nearest-neighbor approach, the use of Eq. �7� with
Eqs. �4� and �5� yields

�0 =
N

8�d
���d� �0 =

N

64�d
�2d���d� − ���d�� �8�

2.3 Thin Film Mechanics. The properties of the adsorbed
molecules derived above can be simply inserted into conventional
continuum mechanics models of a freestanding film. For small
deflections,4 the governing equations can be derived from elemen-
tary equilibrium models, such as those shown in Fig. 3. For plane
strain deformation �i.e., �zz=0�, the surface stress is given by

�xx = �0 + �3�0 + 2�0��xx
S = �0 + ���xx

S �9�

where �xx
S is the strain on the surface of the film with adsorbed

molecules and �� is the effective modulus of the adsorbed groups.
Note that �� involves a contribution from the isotropic surface
stress.

The strain in the film can be written generally as the superpo-
sition of stretch of the centerline, �0�x�, and that arising from
bending, −�x�y, where �x� is the curvature of the film. In the
following, we consider adsorption on a single side of a freestand-
ing structure. Using Fig. 3 and Eq. �9�, the net axial force resultant
per unit width and acting at the centerline of the beam is given by

Nx�x� = �Ēh + ����0�x� − ��
h

2
�x� + �0 �10�

while the net moment per unit width acting at the centerline of the
beam is given by

Mz�x� = −
h

2
���0�x� + � Ēh3

12
+

h2

4
����x� −

h�0

2
�11�

These expressions can then be used with appropriate boundary
conditions to relate deformation to adsorption parameters in com-
bination with other external loads.

For example, consider the vertical deflection of a cantilever
structure with adsorption �on the positive y face� that is loaded
with a point load P at x=L, such as may be applied with an atomic
force microscope �AFM�. The net moment is Mz�x�= P�L−x�,
while Nx�x�=0. Using these relationships, the vertical deflection at
the tip of the cantilever is given by

3The pair correlation function is defined such that 2
�g�r�dr yields the number of
particles in an annulus of width dr and radius r from a given particle.

4Begley et al. �14� illustrated this for cases of deformation involving large dis-
placements, encompassing both plate �i.e., bending-dominated� and membrane �i.e.,
stretch-dominated� regimes.

Fig. 3 Elementary beam models with continuum surface
stress on the upper surface

Table 1 Nearest-neighbor correlation function parameters

Lattice Coordination number N Proportionality factor �

Trigonal 3 4 /3�3=0.77
Cubic 4 1
Hexagonal 6 �3 /2=0.87
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	 = 3
L2

h � �0

Ēh + 4��
� +

4PL3

Ēbh3
� Ēh + ��

Ēh + 4��
� �12�

where b is the width of the cantilever. The first term is the static
deflection due to adsorption in the absence of point loads,5 and the
second term is the deflection due to the application of the tip load.
It is noteworthy that the relative effects of the surface adsorption
parameters involve different scalings with the beam thickness h.
This has critical implications for device development and is dis-
cussed in subsequent sections.

As a second example, one can easily apply this framework to
scenarios involving clamped films. For simplicity’s sake, consider
cases where ��=0, which is a good approximation for the short-
range potentials presented later for DNA. For compressive surface
stress, the deflection is identically zero below a critical value that
leads to buckling. Solving the eigenvalue problem yields the criti-
cal surface stress to induce buckling �for single-sided adsorption�,

− �0
c

Ēh
�


2

3
� h

L
�2

+ �p �13�

where �p represents a prestrain �prior to buckling�, which may
arise during fabrication. The negative sign on the left reflects that
buckling is only possible with compressive �negative� surface
stresses. Scenarios with �p�0 represent a compressive fabrication
stress that lowers the adsorption buckling threshold; �p�0 im-
plies residual tension, which lowers �or eliminates� the likelihood
of buckling. The postbuckling displacements are given by

	 =
2L



� �

�0
c − 1 �14�

This expression is derived by integrating the axial strains pro-
duced by out-of-plane deflection, which must yield displacements
consistent with imposed boundary conditions �15�. For double-
sided adsorption, a factor of 2 should premultiply the surface
stress in Eqs. �13� and �14�.

3 Surface Stresses Generated by Adsorption: Illustra-
tive Cases

3.1 Two-Dimensional Adsorption of Buckminsterfullerene
(C60 Molecules). C60 represents an excellent opportunity to quan-
tify adsorption-induced stresses and explore their impact on mi-
crodevice response for two reasons. First, the adsorption of C60
molecules onto metal and oxide surfaces is well established �e.g.,
Ref. �16��. Second, the pair potential governing molecular inter-
action has been extensively characterized �e.g., Refs. �17–19��.
The pair interaction is well described by Lennard–Jones-type po-
tentials that lead to both attractive and repulsive intermolecular
forces, depending on the separation. Of the many forms of the
C60–C60 potential that have been set forth, we adopt the following
as it is simple and captures the essential behavior:

��r� = �0�� r0

r
�12

− 2� r0

r
�6� �15�

where �0	0.25 eV	3. �10−20 J is the depth of the potential
well and r0	1.04 nm is the equilibrium separation for a pair of
C60 molecules.

The nature of this potential is such that the surface properties
will be very sensitive to the distribution of molecules on the sur-
face, particularly for adsorption spacing near the pair equilibrium
spacing r0. This is because small changes in spacing near the
potential minimum can dramatically alter the contribution of a
given pair to the overall surface stress. As such, a meaningful
prediction of surface stresses requires an accurate pair correlation

function to describe the arrangement of molecules on the surface.
In order to obtain a realistic pair correlation function, we have

conducted Monte Carlo �MC� simulations �Fig. 4� of the molecu-
lar distribution on a 2D surface using the above potential. The
simulations depart from an initially perfect 2D hexagonal struc-
ture of 4096 particles in a periodic box with an initial edge length
of 66.56 nm. The particle positions were then equilibrated for 5
�104 MC cycles at a temperature of T=700 K and at a constant
line pressure of 0.1 N /m. An isothermal-isobaric ensemble was
simulated; i.e., the simulation box was allowed to fluctuate in size
during the simulation. In the present case, no substrate-molecular
interactions are included—i.e., it is assumed that the binding en-
ergy and availability of binding sites do not influence the spatial
arrangement.

The distribution of particles and the resultant pair correlation
function are shown in Fig. 3. The pair correlation exhibits peaks at
roughly the spacing of the pair equilibrium position; however, it is
important to emphasize that the minute details of the distribution
near the first peak play a critical role in dictating the surface stress
due to the sharpness of the potential. The surface stresses can be
obtained either directly from the MC simulation or by using the
results in Fig. 3 in conjunction with Eq. �4�. In order to explore
the magnitude of the surface properties as a function of character-
istic spacing, the pair correlation function can be scaled radially.
Figure 5 shows the outcome of this scaling procedure, illustrating

5This is identical to results published elsewhere, except for the modification due
to the effective modulus of the adsorbed groups, ��.

Fig. 4 Simulation snapshot „top… and pair correlation function
„bottom… determined from MC simulations of C60 adsorption.
Only the details of the first peak factor into surface stresses.

Fig. 5 Surface stresses generated by adsorption of C60
fullerenes as a function of characteristic separation in a hex-
agonal array
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the surface properties as a function of the location of the first peak
in the pair correlation function.

It is noteworthy that significant surface stresses can be gener-
ated by C60 adsorption, both in the tensile and compressive
regimes—provided the effective adsorption spacing can be con-
trolled to within 1 nm or 2 nm. Moreover, the stiffness of the
adsorbed layer can be comparable to the in-plane stiffness of mi-
crodevices, as discussed in Sec. 4.

3.2 Semiflexible Polyelectrolyte Brushes: DNA. ds-DNA is
a stiff polyelectrolyte. In concentrated solution, it forms a nemati-
cally ordered liquid crystalline phase, and similarly ordered ar-
rangements are expected to arise from end-grafting ds-DNA onto
surfaces at sufficiently high density. Measuring the interchain
spacing in nematically ordered ds-DNA solutions as a function of
the osmotic pressure, Strey et al. derived and experimentally vali-
dated an effective pair interaction potential between ds-DNA mol-
ecules �13�. In the following, we demonstrate the use of this po-
tential to describe chemomechanical coupling. Naturally, with a
suitable adjustment of parameters, the same potential is also ap-
plicable to other semiflexible charged polyelectrolytes.

For long semiflexible polymers subject to electrostatic interac-
tions and hydration forces, the pair potential in a general form is
written as

�o�r� = �D

exp�− r/rD�
�r/rD

+ �H

exp�− r/rH�
�r/rH

�16�

where r is the separation between two molecules. rD is the Debye
screening length, which controls the scale over which electrostatic
repulsion is relevant,

rD =
1

�4
lB
i

�c
i zi

�17�

where lB	0.7 nm is the Bjerrum length �for water at room tem-
perature�, and �c

i and zi are the number density and valence of
ionic species in the solution surrounding the polyelectrolytes. For
monovalent salt solutions in water, rD=0.308 nm /�M / �mol / l�.
rH is the length that controls the scale of hydration repulsion; for
charged DNA, rH�0.3 nm.

The two amplitudes of the potential, �D and �H, are empirical
constants �with units of energy�. It should be noted that Strey et al.
derived the interaction potential on a per length basis, as it was
motivated by osmotic pressure measurements of microscale liquid
crystals �13�. Here, we have chosen to recast the potential in terms
of total interaction energy, such that the molecular length of the
adsorbed groups remains as an explicit parameter. As such, one
must multiply the Strey et al. coefficients by molecular length to
obtain �D and �H.

For long molecules, conformational fluctuations along their
length result in additional repulsion. This can be accounted for by
modifying the bare interaction potential according to Strey et al.
�13�,

��r� = �0 + �
�kTL�3/4

�lp�1/4 � �2�D,H

�r2 −
1

r

��D,H

�r
�1/4

�18�

where � is a dimensionless constant of order unity. Note that the
bracketed fluctuation term involves the bare interaction param-
eters �D, �H, rD, and rH. To understand when the fluctuation term
is important, one may consider a large separation ���1 nm�,
such that screened electrostatic repulsion dominates hydration re-
pulsion. In this regime, the interaction potential can be written as

��r� 	 �D

exp�− r/rD�
�r/rD

�1 + �� kT

�D
�3/4� L3

lprD
2 �1/4

f�r/rD��
�19�

where

f�r/rD = r̂� = � �5 + 8r̂ + 4r̂2��exp r̂�3

r̂
�1/4

�20�

Written in this manner, the second term in brackets in Eq. �19�
reflects the relative size of the fluctuation contribution to the bare
interaction. Retaining the molecule length in the potential formu-
lation clearly illustrates that the fluctuation contribution depends
on the length of the molecule relative to its persistence length and
the Debye length.

The increasing function of spacing given by Eq. �20� indicates
that fluctuation terms quickly dominate at large spacing; a rough
estimate for the crossover between bare interactions and fluctua-
tion interactions can be determined by setting �=1 and equating
the bracketed terms in Eq. �19� Figure 6 shows the critical spacing
at which fluctuation terms become larger than the bare interaction,
as a function of the controlling dimensionless parameter. For large
spacing, the interaction potential asymptotes to

�F�r� 	 �D� kT

�D
�3/4� L3

lprD
2 �1/4exp�− r/4rD�

�r/4rD

�21�

This form clearly indicates the competition between molecular
length, persistence length, and Debye length, as well as the rela-
tive importance of electrostatic energy and thermal energy. More-
over, it illustrates the point made by Strey et al., i.e., that the
additional term due to conformational fluctuations quadruples the
scale over which interactions occur �13�.

Figure 7 shows the implications of using the pair potential of
Strey et al. to describe the role of molecular interactions in the
adsorption energy balance �Eq. �1��. Here, the full potential of
Strey et al. �including electrostatic, hydration, and fluctuation
terms� is used with Eq. �1� to predict the grafting density of ds-
DNA as a function of salt concentration. A hexagonal arrangement
is assumed. The chosen binding energy is appropriate for Au–S
bonds. The relevant potential parameters are listed in Table 2.
These parameters are approximately equal to those identified by
Strey et al. �13� multiplied by the molecular length, with varia-
tions on �D to illustrate the relative effect of Debye screening. For
salinities greater than unity, the hydration repulsion term domi-
nates and dictates the maximum possible grafting density.

The data from the adsorption measurements of Castelino et al.
on 40 bp of ss-DNA �12� are superimposed on the predictions of
Fig. 7. The comparison is not meant to be strictly quantitative
since the use of a semiflexible polymer pair potential is clearly

Fig. 6 Critical adsorption spacing for a hexagonal array of
semiflexible polymers „e.g., DNA…, where bare interactions and
thermal fluctuations are equivalent.
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objectionable for ss-DNA. Nevertheless, it is clear that a pair po-
tential that involves two different interaction length scales is ca-
pable of capturing the trend in grafting density with salinity—
using molecular interaction parameters that are in agreement with
existing measurements. It is likely that any strongly repulsive po-
tential with similar interaction length scales and amplitudes will
reproduce the behavior shown in Fig. 7.

The surface stresses generated by ds-DNA adsorption are
shown in Fig. 8 as a function of adsorption spacing and salinity.
The molecular parameters used in the prediction are given in
Table 3. Here, we have chosen to plot effective adsorption spacing
�as opposed to grafting density� as one can clearly observe the
transition from hydration-dominated to fluctuation-dominated sur-
face stresses. For small spacing, the surface stress scales linearly
with the number of base pairs because the bare interaction ampli-
tudes �H and �D scale with the molecular length. For larger spac-
ing, the surface stress scales as L7/4 due to the interplay between
bare interactions and fluctuation terms.

The results in Fig. 8 are in agreement with the microcantilever
experiments reported elsewhere �e.g., Ref. �5,12��. This is to be
expected, of course, given the similarity of the present approach
and that outlined by Hagan et al. �5�; the key point here is that the
surface stresses can be derived independently of the structural
deformation. Moreover, the present formulation clearly delineates

between regimes where fluctuation terms are not important.
Strictly quantitative comparisons will require calculations for
equivalent numbers of base pairs and, mostly likely, alteration of
the interaction parameters to reflect the effects of end grafting on
the pair potential outlined by Strey et al. �13�.

The present framework can be used to predict surface stresses
as a function of the salt concentration maintained during adsorp-
tion. In this approach, the grafting density is not an independent
parameter, but rather dictated by the energy balance given as Eq.
�1�. The chosen concentration of ds-DNA in solution is 5 �M.
The bottom curve in Fig. 8 illustrates the results, wherein the
same pair potential used to predict surface stress is also used to
predict grafting density. In this case, the surface stress is lower
than that of fixed grafting density because decreasing the amount
of electrostatic screening �by decreasing salinity� will decrease
grafting density. It is important to note that despite the fact that
the grafting density is decreasing, it is still possible to generate
significant surface stress.

4 Performance of Devices Utilizing Molecular Adsorp-
tion

In this section, we couple the molecular and continuum frame-
works in Sec. 2 to predict device behavior, with the purpose of
illustrating how the present approach facilitates integrated design
of surface chemistry and microdevice geometry.

4.1 Cantilevers as a Path Toward Characterizing Molecu-
lar Potentials. The behavior of cantilevers with adsorbed C60
molecules on a single side is illustrated in Fig. 9 by plotting me-
chanical response as a function of characteristic adsorption spac-
ing. Here, two 500 �m long cantilevers are compared: a 250 nm
thick silicon cantilever and an 8 �m thick elastomer cantilever.
The dimensions are chosen such that the bare cantilever bending
stiffnesses, which scale with Ēh3, are equivalent. Figure 9 plots
separately the static deflection due to adsorption and the spring
constant of the cantilever when subjected to a point load at its tip,
as a function of effective spacing between adsorbed groups. In
order to obtain the plots, the pair correlation function resulting
from MC simulation at a specific density has been scaled with the
location of the first peak as a parameter. The deflection of both
cantilevers changes sign at an effective adsorption spacing of
�1 nm, due to the switch from attractive to repulsive molecular

Fig. 7 Grafting density and hcp lattice spacing as a function of
salt concentration under which adsorption occurs using the
full potential for DNA developed by Strey et al. †13‡.

Table 2 Pair potential parameters for grafting density predic-
tion „Fig. 7… „��B=160 kJ, c=1.2Ã10−4–5Ã10−6 �M, T=293 K…

Hydration repulsion Electrostatic repulsion Fluctuation ��=0.16�

�H=3.6�10−15 J �D= �0.4,1.2,6��10−17 J L=40 bp�12 nm
rH=0.3 nm rD=0.3 nm /�M / �mol / l� lp=44 nm

Fig. 8 Surface stress predictions for hcp grafting of DNA de-
veloped by assuming nearest-neighbor interactions and the full
potential for DNA developed by Strey et al. †13‡

Table 3 Pair potential parameters for surface stress prediction
„Fig. 8… „T=293 K…

Hydration repulsion Electrostatic repulsion
Fluctuation terms

��=0.13�

�H=3.3�10−15 J �D=1.2�10−17 J L=100 bp�30 nm
rH=0.3 nm rD=0.3 nm /�M / �mol / l� lp=44 nm

Fig. 9 Cantilever deflections and stiffness as a function of C60
adsorption spacing, comparing several silicon and PDMS
microcantilevers
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interactions.
Adsorption-induced deflection is much more dramatic in the

elastomer cantilever. This example clearly illustrates the differ-
ence between bending stiffness and surface compliance. Surface
compliance refers to the sensitivity of the device to surface stress

and scales with Ēh2 rather than with Ēh3. This distinction is criti-
cal to the development of ultrasensitive sensors. The surface com-
pliance governs the sensitivity of the device to surface adsorption,
while the bending stiffness governs the sensitivity of the device to
external loading, such as pressure fluctuations created by differ-
ences in fluid velocity above and below the cantilever. Thus, de-
spite the vastly different size and dramatically increased surface
stress sensitivity of the elastomer film, the elastomer is not neces-
sarily more sensitive to external perturbations.

The increase in surface compliance arising from low modulus
materials opens up avenues to molecular characterization that are
not feasible with stiff materials. Figure 9 clearly indicates that,
unlike a silicon cantilever, a PDMS structure will be highly sen-
sitive to effective adsorption spacing. Both the static deflection
and point-load bending stiffness of a PDMS cantilever will vary
significantly for small perturbations in effective spacing. This is a
direct result of the scaling argument outlined above. Poly�dimeth-
ylsiloxane� �PDMS� cantilevers create the possibility of character-
izing both the surface stresses arising from adsorption and the
effective modulus of the adsorbed groups. This implies that both
the depth of the potential well and the pair equilibrium spacing
can be estimated since measurements of static deflection and
bending stiffness represent two independent measures of adsorp-
tion effects.

The possibility of constructing ultracompliant polymer cantile-
vers to quantify molecular interactions is further supported by the
implications of Fig. 10, which depicts cantilever deflection as a
function of DNA characteristics. Here, we have chosen to plot
cantilever deflection as a function of grafting density since this
quantity can be directly compared with existing fluorescence mea-
surements. The fluctuation contributions to deflection are only
dominant for relatively low grafting densities �large adsorption
spacing�. The square markers on the left of Fig. 10 represent the
grafting density for which the fluctuation contribution is equal to
that arising from bare interactions.

In this regime, the overall magnitude of surface stress is rela-
tively low—so low, in fact, that silicon devices are incapable of
quantifying fluctuation-related interactions. Figure 10 illustrates
that it should be possible to directly quantify fluctuation effects by
using polymer cantilevers; the increase in surface compliance im-
plies that significant deflections can be achieved even for low
grafting densities. Figure 10�b� shows that in order for the deflec-
tion to be a strong function of persistence length, the adsorption
spacing has to be relatively high. Otherwise, electrostatic and hy-

dration forces dominate the response. By utilizing ultracompliant
elastomer structures, one can achieve measurable deflections with
very low grafting densities.

It should be emphasized that despite the low modulus of the
PDMS cantilever, the bending stiffness �which dictates the struc-
tures’ response to ambient noise� is actually higher than that of the
silicon. Figure 10 also demonstrates that it is possible to achieve
deflections on the order of 100 �m for a very dense surface cov-
erage. Such deflections are large enough to alter fluid motion in-
side a microfluidic device and realize the concept illustrated in
Fig. 1.

4.2 Clamped Films. Cantilevers will obviously maximize
displacement for a given adsorption scenario. However, if suffi-
ciently compliant structures can be fabricated, even clamped films
can exhibit significant deformation. In this scenario, silicon or
metal cantilevers will not exhibit sufficient compliance to allow
out-of-plane buckling. Hence, we again consider the performance
of a PDMS or an elastomer film. Figure 11 plots the displacement
of a clamped film as a function of adsorption spacing and salt
concentration for the case of single-sided adsorption. It should be
noted that unlike cantilevers, clamped films will still deform out
of plane in response to double-sided adsorption; in fact, in this
scenario, the driving force doubles. The fact that the film is
clamped implies that beneath the critical surface stress, no defor-
mation takes place. Figure 11 shows that there is a critical adsorp-
tion spacing for a given salinity that will trigger buckling: Beneath
the critical spacing, the deflection will increase as grafting density
increases. Similarly, for a given adsorption spacing, there is a
critical salinity above which there is no deformation. Below the
critical salinity, the deflection increases with decreasing salt
concentration.

The results in Fig. 11 clearly indicate that it should be possible
to create adsorption-driven films that experience large deforma-
tion accommodated via buckling. In particular, the results illus-
trate that this functionality can be achieved with relatively large
adsorption spacing and fairly moderate changes in salt concentra-
tion. Moreover, there is the possibility of “tuning” devices to the
onset of the buckling instability by controlling compressive pre-
strain. Adsorption would then trigger buckling, with the prestrain
acting to amplify adsorption-induced deformation. Of course, this
requires microfabrication procedures capable of precisely modu-
lating prestrain in the film.

5 Concluding Remarks
The rational design of microdevices that exploit chemome-

chanical coupling requires that choices regarding chemical surface
functionalization be made in concert with choices of device ma-
terials and geometry. The present framework enables device de-
velopers to identify suitable nano- and microfabrication targets

Fig. 10 Predicted cantilever deflections as a function of the
persistence of semiflexible polymers for several adsorption
spacings „hexagonal nearest-neighbor interactions using the
Strey potential…

Fig. 11 Predicted clamped PDMS film deflections as a function
of DNA adsorption spacing at several salt concentrations. At a
fixed concentration, there is a critical adsorption spacing that
triggers out-of-plane buckling.
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that incorporate both device-level and molecular-level phenom-
ena. For example, the binding energy required to produce suffi-
cient grafting density for a strongly coupled behavior can be iden-
tified in terms of microfabrication limits. Conversely,
microfabricaton targets that would enable new types of molecular
characterization can be defined for known functionalization path-
ways.

The calculations presented for DNA—using experimentally
verified pair interactions—clearly demonstrate the potential to
construct highly sensitive structures via self-assembly of polyelec-
trolyte brushes. The ability to modulate surface stress via electro-
static screening represents a powerful opportunity to create chemi-
cally activated structures to guide fluid flow in microfluidic
devices. An important implication of the present calculations is
that grafting density and surface stresses can be independently
controlled; one can self-assemble polymer brushes under heavily
screened conditions �where surface stresses are low�, and then
increase chemomechanical coupling by reducing electrostatic
screening, simply by diluting the salt concentration of the sur-
rounding fluid.

In the preceding, we have mainly limited the discussion to sce-
narios where molecular adsorption is irreversible; i.e., desorption
is not explicitly considered. However, the present framework sets
the stage to consider more complex interactions, notably the de-
sorption of molecules driven by mechanical deformation. Using
the framework presented here, one can explicitly calculate the
balances between binding energy and deformation that lead to
desorption.

The use of elastomeric structures dramatically broadens the
range of applicability of chemomechanical coupling. The large
displacements that are possible with such materials may ulti-
mately eliminate the need for a sophisticated detection hardware,
which is indispensable with stiff metallic or semiconductor mate-
rials. By pushing chemically induced deformation into the
10–100 �m range, optical and electronic �i.e., capacitance� trans-
duction strategies, which can be integrated directly into lab-on-a-
chip technology, are feasible.

The success of this strategy naturally depends critically on the
development of surface functionalization pathways that do not
comprise the surface compliance of PDMS-based materials. It is
interesting to note that even nanoscale metallic coatings signifi-
cantly compromise surface compliance and limit sensitivity �20�.
To date, feasible strategies rely on the use of plasma oxidation to
create a glassy layer of SiO2 groups, which then serves as a plat-
form for subsequent reactions, for example, the covalent bonding
of organic molecules such as �3-aminopropyl�triethoxysilane
�APTES� �21�. It may be possible to combine plasma oxidation
with C60 grafting approaches developed for oxide surfaces �e.g.,
Ref. �16��.
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Introduction
At an early stage of development of any field of science, dif-

ferent models exist for different situations. Such models have, of
course, narrow applicability and cannot be extended beyond the
limited range of their experimental support. Development of a
general, unified theory which agrees with experiments of all kinds
generally provides a far broader applicability and makes it pos-
sible to extrapolate to situations outside the range of the existing
experimental support.

The present paper attempts to formulate a unified theory for the
mechanical behavior of fiber-polymer laminates. A constitutive
law will first be developed for laminates with unidirectional rein-
forcement. General laminates with multidirectional reinforcement
will then be modeled as an overlay of lamina with unidirectional
reinforcements of different orientations.

For fiber-polymer composites, efforts in the 1960s by Rosen
�1,2�, Adams and Doner �3,4�, and Bažant �see Sec. 11.8 of �5��
led to highly accurate models for predicting the elastic moduli
�6,7�. Many models also exist for the multiaxial strength criteria
�or strength envelopes in the stress space�, among which the qua-
dratic criterion of Tsai and Wu �8� usually performs the best. The
separate roles of matrix, fibers, and their interface have also been
clarified.

These models, however, generally neglect the quasibrittle char-
acter of these materials. In both quasibrittle and brittle-ductile
fracture, the crack tip is surrounded by a nonlinear zone that is not
negligible compared to the cross-section dimension of the struc-
tures. While in brittle-ductile fracture, the fracture process zone

�FPZ� at crack tip occupies a negligibly small part of the nonlinear
zone, which is plastic, the FPZ in quasibrittle fracture occupies
almost the entire nonlinear zone and undergoes softening damage
rather than plastic deformation. The stress along the FPZ is non-
uniform and the stress decreases with crack opening gradually,
due to discontinuous cracking in the FPZ, crack bridging by fi-
bers, and frictional pullout of inhomogeneities.

Aside from polymer-fiber composites, the quasibrittle materials
include concrete �the archetypical case studied the earliest�, rocks,
stiff soils, sea ice, wood, toughened ceramics, rigid foams, paper,
etc. The quasibrittle materials generally exhibit not only the sta-
tistical size effect but also a strong energetic �nonstatistical� size
effect, which often dominates and is caused by stress redistribu-
tion due to formation of a large crack or large FPZ before the
maximum load �for laminates, this behavior has been experimen-
tally demonstrated for various fracture types in �9–14�. As a con-
sequence, the fracturing behavior of quasibrittle materials and,
most importantly, the energetic size effect and the quasibrittleness
effect associated with structure geometry, cannot be described by
means of the classical linear elastic fracture mechanics.

The energetic size effect and geometric effect of brittleness due
to large tensile mode I cracks or notches, with their characteristic
material length, have been described by an orthotropic generali-
zation of Bažant’s size effect law �9�. However, this model applies
neither to short cracks nor initiating fractures, for which the mul-
tiaxial strength criteria are intended. For kink-band compression
failure of fiber composites and the associated size effect, an adap-
tation of the cohesive crack model has been formulated and ex-
perimentally justified �10,15� but the model has not been extended
to general multiaxial and mixed-mode loadings.

The energetic size effect at fracture initiation, which is observed
in flexural failure of laminates, the size of which represents the
characteristic length of the material, has recently been modeled as
a consequence of stress redistribution due to formation of a
boundary layer of cracking �or FPZ� and received a strong experi-
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mental justification �11,12,16,17�. Nonetheless, the model does
not apply to multiaxial loading and extends neither to post-peak
crack propagation, nor to structures of negative geometry �i.e.,
structures in which the derivative of energy release rate with re-
spect to crack length at constant load is negative�.

The fracture energy and material characteristic length, which
are most easily identified from size effect tests of notched speci-
mens, should, in principle, allow computational predictions of
damage localization and post-peak energy absorption under dy-
namic loadings such as impact, blast, and water or ground shock.
However, such predictions are not feasible without a general
model capturing also the anisotropic stiffness determined by mi-
crostructure and the multiaxial anisotropic strength criteria.

The analysis that follows is intended to make a step toward
combining all the aforementioned phenomena into a single unified
theory—a theory that can be used in general computer codes for
predicting any behavior under general loadings. Much greater ad-
vances toward this lofty goal have already been made for other,
perhaps less complicated, materials; e.g., for concrete, the mi-
croplane model, in the crack band or nonlocal setting, can ap-
proximately model the effects of random fiber reinforcement and
steel reinforcing bars, the multiaxial strength criteria �with their
history dependence�, fracture propagation, post-peak softening,
damage localization, energy absorption, and loading rate effects.
For ductile metals, similar great advances have been made by
Taylor models for polycrystals and Gurson’s model for damage
combined with plasticity theory and with material characteristic
length.

It ought to be possible to achieve the same for fiber-polymer
composites, despite the special complexities of their microstruc-
ture. Such an advance would allow a much more realistic analysis
of large fracture-sensitive sandwich structures, such as the hulls,
decks, bulkheads, masts, and antenna covers of very large and
ultra-light ships made of composites, as well as load-bearing fu-
selage panels, wing box and rudder assemblies of large very light
aircraft, or wind turbine blades, drive shafts, and containments or
enclosures of various kinds. The goals and the problems are simi-
lar for carbon, glass, and aramid fibers in epoxy or vinylesther
matrix, and for various manufacturing techniques.

Background of Microplane Model
Inspired by the slip theory of plasticity �pioneered by Taylor

�18� and formulated in detail by Batdorf and Budiansky �19��,
Bažant and Oh �20,21� introduced the microplane model to simu-
late materials such as concrete, exhibiting softening damage. The
model captures the fact that almost all of the inelastic phenomena
in the concrete microstructure, including crack opening, frictional
slip and dilatancy, compressive splitting with lateral spreading,
and fiber break or pullout, have distinct spatial orientations that
cannot be captured by the classical tensorial constitutive models
exemplified by the theories of plasticity.

The microplane model rests on two basic ideas: �1� describe
idealized microstructural phenomena by a constitutive relation ex-
pressed not in terms of stress and strain tensors of the macro-
scopic continuum, but in terms of the stress vector and strain
vector acting on planes of all possible orientations at a given point
of the continuum; and �2� use a variational principle to relate the
microplane vectors �the micro� to the continuum tensors �the
macro�.

Therefore, instead of a traditional tensorial constitutive model,
the microplane model uses a constitutive law formulated in terms
of stress and strain vectors acting on a generic microplane. This
approach has a number of advantages �22�, among which the main
ones are as follows. �1� Various physical phenomena are easier to
formulate. �2� Various combinations of loading and unloading on
different microplanes provide a rich spectrum of path dependence
and automatically produce the Bauschinger effect. �3� Thanks to a
vectorial constitutive description, the spatial orientations of crack-
ing and slip can be captured �note that, for example, a relation

between the first and second invariants of the stress tensor is gen-
erally a poor characteristic of internal friction because frictional
slip typically occurs on planes of one or several distinct orienta-
tions�. �4� The model automatically exhibits the vertex effect,
which is not captured by any of the practically usable tensorial
models. �5� Interaction of microplanes provides all the cross-
effects such as shear dilatancy and pressure sensitivity.

The penalty to pay for these advantages is an increased amount
of computations. However, this penalty is becoming insignificant
for the latest, most powerful computers. Besides, the larger the
system, the smaller the penalty, because large systems are compu-
tationally dominated by the structural stiffness matrix rather than
the constitutive subroutine. Systems with �10 millions of finite
elements are being solved with the microplane model for concrete
�23�.

Since its introduction in the early 1980s, the microplane model
for concrete has evolved through five progressively improved ver-
sions labeled as M1 �20,21�, M2 �24�, M3 �25�, M4 �22,26,27�,
and M5 �28,29�. Microplane models have also been developed for
other complex materials such as rock �30�, sand, clay, rigid foam,
shape memory alloys �31–33�, and fiber reinforced concrete �34�.
The microplane model has been generalized for finite strain in
�23�. A more fundamental finite strain formulation based on ther-
modynamic potentials was developed in �35�. Additional mi-
croplane model formulations can also be found in �36,37�.

Spectral Decomposition of the Stiffness Matrix. The elastic
stress-strain relation of an anisotropic material reads, in tensorial
notation,

�ij = Eijkl�kl �1�

where the indices refer to Cartesian coordinates xi �i=1,2 ,3�; �ij

and �ij are the second-order stress and strain tensors, respectively.
They are symmetric and their symmetry enables their contraction
into six-dimensional vectors � and �. Similarly, the internal and
external symmetries of the fourth-order stiffness tensor Eijkl allow
its contraction into a 6�6 matrix E. The following rules contract
a pair of indices into a single index: 11→1, 22→2, 33→3,
�23,32�→4, �13,31�→5, and �12,21�→6. Therefore, in matrix
notation we can write:

� = E� �2�

where

� = ��11 �22 �33
�2�23

�2�13
�2�12�T �3�

� = ��11 �22 �33
�2�23

�2�13
�2�12�T �4�

and the matrix E is defined accordingly. The foregoing definitions
of six-dimensional vectors are known as the Kelvin notation
�38,39�. The factor �2 assures that both the stiffness tensor and its
column matrix have the same norm, given by the sum of the
squares of their elements.

By exploiting the well known spectral decomposition theorem,
we can decompose the stiffness matrix �40–43� as follows:

E = �
I

�IEI �5�

where �I are the six eigenvalues of the stiffness matrix and EI
define a set of matrices constructed from the eigenvectors of E:

EI = �
n

�In�In
T �6�

where �In is the eigenvector associated with the eigenvalue �I of
multiplicity n and normalized such that �In

T E�In=�I. Matrices EI
represent a partition of unity, i.e., �IEI=1, they are orthogonal,
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i.e., EIEJ=0 if I�J, and idempotent, i.e., EIEI=EI.
The same matrices EI also decompose the stress and strain vec-

tors into energetically orthogonal modes, which are called eigen-
stresses and eigenstrains and are defined as:

�I = EI� �7�

�I = EI� �8�

It is easy to show that �=�I�I, �=�I�I, and �I=�I�I. In the case
of isotropic materials, the decomposition of stresses and strains in
Eqs. �7� and �8� represents the well known volumetric-deviatoric
decomposition.

The spectral decomposition theorem can be applied to the com-
pliance matrix C=E−1 with a similar result:

C = �
I

�I
−1EI �9�

Note that in this case the eigenvalues are the inverse of the eigen-
values of the corresponding stiffness matrix, while the matrices EI
are the same.

Microplane Model Formulation With Spectral
Decomposition. At the microstructural level of a material, non-
linear and inelastic phenomena often occur on planes of a certain
specific orientation. Therefore, the constitutive law characterizing
the mechanical behavior is best described through a relation be-
tween stress and strain vectors acting on a generic plane of arbi-
trary spatial orientation. These planes, called the microplanes
�20,21�, can be imagined as the tangent planes of a unit sphere
surrounding every point in the three-dimensional space �Fig.
1�a��.

There are two different classes of microplane models: the kine-
matically constrained and the statically constrained. In the kine-
matically constrained microplane model �introduced by Bažant
and Oh in �20,21��, the strain vector on each microplane is the
projection of the macroscopic strain tensor. By using the Kelvin
notation, we can write:

�P = P� �10�

where �P= ��N �M �L �T is the microplane strain vector, with
�N�normal strain component, �M and �L�shear strain compo-
nents, and

P = �N11 N22 N33 �2N23
�2N13

�2N12

M11 M22 M33 �2M23
�2M13

�2M12

L11 L22 L33 �2L23
�2L13

�2L12

� �11�

Matrix P collects the components of the tensors Nij =ninj, Mij
= �minj +mjni� /2, and Lij = �linj + ljni� /2, where ni, mi, and li are
local Cartesian coordinate vectors on the generic microplane, with
ni being normal. If the microplane orientation is defined by spheri-
cal angles � and 	 �Fig. 1�b��, then n1=sin � cos 	, n2
=sin � sin 	, n3=cos �, and one can choose m1=cos � cos 	,
m2=cos � sin 	, m3=−sin �, which gives l1=−sin 	, l2=cos 	,

and l3=0.
By the spectral decomposition of the strain tensor and a sepa-

rate projection of each eigenstrain, we can also decompose the
microplane strain vector into microplane eigenstrains as:

�P = �
I

�PI �12�

where �PI=P�I=PI�, with PI=PEI. The split of the mi-
croplane strain vector introduced in Eq. �12� is an anisotropic
generalization of the volumetric-deviatoric split introduced in the
isotropic microplane model in �24,22�.

From the microplane eigenstrains, the microplane eigenstresses
�PI are calculated according to the constitutive relations for the
normal and shear components of each eigenmode: �NI
=FNI��P1 ,�P2 , . . . �, �MI=FMI��P1 ,�P2 , . . . �, and �LI

=FLI��P1 ,�P2 , . . . �.
The macroscopic stress tensor may then be computed from the

principle of virtual work, which reads:

� =
3

2
�
I
	

�

PI
T�PId� �13�

where � is the surface of a unit hemisphere. This principle rep-
resents a weak variational constraint. In general, the projection of
the stress tensor does not coincide with the microplane eigen-
stress: �PI�PI�. Nevertheless, such a coincidence, called the
double constraint, holds in the elastic regime if and only if the
microplane eigenstress vector is proportional to the microplane
eigenstrain vector through the associated eigenvalue:

�PI = �I�PI �14�

In this particular case, recalling that �PI=PI� with PI=PEI,
from Eq. �13� we obtain:

�PI = PI� = PEI
 3

2
�
I
	

�

EIPT�IPEI�d��
= PEI�

I

�IEI

3

2

	

�

PTPd�EI� �15�

Moreover, it can be proven that:

3

2

	

�

PTPd� = 1 �16�

Therefore, from Eq. �15� we obtain:

PI� = PEI�J
�JEJEJ� = P�IEIEIEI� = �IPEI� = �IPI�

= �I�PI �17�

which proves the existence of a double constraint for elastic
behavior.

In a statically constrained microplane model, the microplane
stress vectors are the projections of the macroscopic stress tensor

�P = P� �18�

or, equivalently, by introducing the spectral decomposition of
stresses:

�P = �
I

�PI, �PI = P�I = PI� �19�

After formulating suitable constitutive relations at the microplane
level, it is possible to obtain the microplane strains from the mi-
croplane stresses as: �NI=GNI��P1 ,�P2 , . . . �, �MI

=GMI��P1 ,�P2 , . . . �, and �LI=GLI��P1 ,�P2 , . . . �. The macro-
scopic strain is then obtained by imposing the principle of
complementary virtual work, which reads:

Fig. 1 „a… Microplane orientations „normals defined by radial
lines through circled points…; „b… spherical coordinate system;
and „c… coordinate system for laminates
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� =
3

2
�
I
	

�

PI
T�PId� �20�

In this case the microplane strains are generally not the projec-
tions of the macroscopic strains: �PI�PI�. Nevertheless, as seen
earlier for the kinematically constrained microplane model, the
double constraint holds in the elastic regime ��PI=�I

−1�PI�.

Comparison With Alternative Formulations
Brocca et al. �33� proposed an alternative microplane formula-

tion for anisotropic materials based on the assumption that the
elastic moduli on the microplanes vary ellipsoidally as a function
of the microplane orientation:

Ei�	,�� = Ei1 sin � cos 	 + Ei2 sin � sin 	 + Ei3 cos � �21�

where 	 and � are the angles characterizing the normal direction
of a generic microplane in spherical coordinates �Fig. 1�b��. Sub-
script i=N ,M ,L labels the components of the microplane strain
and stress vectors, and Ei1, Ei2, Ei3 are the microplane elastic
moduli in the x1-, x2-, and x3-directions, respectively. This ap-
proach can be used to approximatively represent the behavior of a
mildly anisotropic material such as a PVC foam. However, it can-
not represent correctly the mechanical properties of strongly an-
isotropic materials such as fiber composite laminates. This can be
easily proven by computing the elastic stiffness matrix arising
from Eq. �21�.

By integrating the microplane elastic energy over the unit hemi-
sphere, we obtain:

W =
3

2

	

�

1

2
�P

T EP�Pd� =
1

2
�T
 3

2

	

�

PTEPPd���

�22�

where matrix EP=diag�Ei�. The equivalent stiffness matrix is de-
fined as:

E* =
3

2

	

�

PTEPPd� �23�

The stiffness matrix E of a generic orthotropic material depends
on nine independent constants that must be uniquely related to the
nine parameters in Eq. �21� if the exact correspondence between

this microplane formulation and the tensorial formulation holds.
To determine that relationship, we can try to solve the system of
simultaneous equations obtained by equating each element of ma-
trix E to the corresponding element of matrix E* �note that the
elements of E* are a linear combination of the microplane elastic
moduli Ei1, Ei2, and Ei3�. Such a system of equations reads

Y = AX �24�

where

Y = �E11,E22,E33,E12,E13,E23,E44,E55,E66�T �25�

X = �EN1,EN2,EN3,EM1,EM2,EM3,EL1,EL2,EL3�T �26�

It can be shown that the rank of matrix A is 6, whereas 9 would
be required to solve the system �24�. Therefore, if an ellipsoidal
formulation for the microplane moduli is used as indicated in Eq.
�21�, it is impossible to represent the material behavior in the
elastic range since an exact correspondence with the tensorial
model cannot be obtained. In particular, the lower rank of the
matrix demonstrates that the ellipsoidal formulation implies a
higher number of symmetries than those implied by material
orthotropy. Only the microplane formulation based on spectral
decomposition of the stiffness tensor guarantees that an exact cor-
respondence in elasticity between tensorial macrostiffness and
vectorial microstiffness can be established.

A similar limitation can be shown for the microplane models
developed for mildly anisotropic clay in �31,44�.

Transverse Isotropy: Analysis of Microplane Eigen-
modes

Let us now consider the case of transverse isotropy, which is
relevant to unidirectional laminates. We introduce a cartesian co-
ordinate system whose axis x3 coincides with the direction of the
fibers �Fig. 1�c��. This axis is orthogonal to the plane of isotropy
of the material. Let the longitudinal direction be the direction of
the fibers �axis x3�, and let the transverse directions be all those
orthogonal to the fibers. The elastic compliance matrix for a trans-
versely isotropic material is given by:

C = �
1/ET − T/ET − L/ET 0 0 0

− T/ET 1/ET − L/ET 0 0 0

− L/ET − L/ET 1/EL 0 0 0

0 0 0 1/�2GL� 0 0

0 0 0 0 1/�2GL� 0

0 0 0 0 0 �1 + T�/ET

� �27�

where EL, ET�Young’s moduli in the longitudinal and transverse
directions, respectively, GL�out-of-plane shear modulus, L,
T�Poisson ratios in the longitudinal and transverse directions,
respectively.

Following �43�, the eigenvalues of the compliance matrix,
which are the reciprocal of the eigenvalues �I of the stiffness
matrix, can be expressed as:

�1
−1 =

1 + T

ET
=

1

2GT
�28�

�2
−1 =

1 − T

2ET
+

1

2EL
− 
�1 − T

2ET
−

1

2EL
2

+
2L

2

ET
2 �1/2

�29�

�3
−1 =

1 − T

2ET
+

1

2EL
+ 
�1 − T

2ET
−

1

2EL
2

+
2L

2

ET
2 �1/2

�30�

�4
−1 =

1

2GL
�31�

and the idempotent matrices decomposing E are
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E1 = �
1/2 − 1/2 0 0 0 0

− 1/2 1/2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

� �32�

E2 = �
c2/2 c2/2 cs/�2 0 0 0

c2/2 c2/2 cs/�2 0 0 0

cs/�2 cs/�2 s2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� �33�

E3 = �
s2/2 s2/2 − cs/�2 0 0 0

s2/2 s2/2 − cs/�2 0 0 0

− cs/�2 − cs/�2 c2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� �34�

E4 = �
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

� �35�

where c=cos �, s=sin �, and � is the so-called eigenangle de-
fined as:

tan 2� =
− 2�2L/ET

�1 − T�/ET − 1/EL
�36�

The projection of the strain modes defined in Eq. �8� on a generic
microplane gives the microplane strain distribution in Tables 1
and 2, where �1= ��1−�2� /2, �2=−sin ���1+�2� /�2+�3 cos �,
and �3=cos ���1+�2� /�2+�3 sin �.

Let us now consider the distribution of the normal strain com-
ponents on the microplane sphere caused by a uniaxial strain ap-
plied at the macroscale in the longitudinal direction �i.e., along the

x3-axis�. Strain mode I and strain mode IV are exactly zero be-
cause they do not depend on �3. Strain mode II and strain mode III
are nonzero and they depend on the eigenangle �. Figures 2�a�
and 2�b� show the microplane normal strain distribution of modes
II and III for isotropic materials ��=0.615� and for a highly an-
isotropic carbon-epoxy composite �AS4 3501-6/epoxy with �
=0.06�. For isotropic materials, mode II coincides with the volu-
metric strain mode, and mode III with the deviatoric strain mode.
On the contrary, for the composite considered, mode II mostly
loads the microplanes whose normal orientation is close to the
direction of the fibers, and mode III almost vanishes.

A different picture arises if we consider a uniaxial strain at the
macroscale applied in the transverse direction �x1-axis�. In this
case the only mode that is exactly zero is mode IV. Figures
3�a�–3�c� show the microplane normal strain distribution of
modes II, III, and I, respectively. For the isotropic case, strain
mode II coincides again with the volumetric strain mode, and the
sum of mode I and mode III coincides with the deviatoric strain
mode. Mode II vanishes and modes I and II mostly load the mi-
croplanes whose orientation is close to the direction orthogonal to

Table 1 Microplane strain modes: Normal component

Mode �N

I sin2 ���1�cos2 	−sin2 	�+2�2�6 sin 	 cos 	�
II �2�−sin � sin2 � /�2+cos � cos2 ��
III �3�cos � sin2 � /�2+sin � cos2 ��
IV 2�2sin � cos ���4 sin 	+�5 cos 	�

Table 2 Microplane strain modes: Tangential components

Mode �M �L

I sin � cos ���1�cos2 	−sin2 	�+2�2�4 sin 	 cos 	� sin ���1 sin 	 cos 	+�2�6�cos2 	−sin2 	��
II �2 sin � cos ��−sin � /�2−cos �� 0
III �3 sin � cos ��cos � /�2−sin �� 0
IV �2�cos2 �−sin2 ����4 sin 	+�5 cos 	� �2 cos ���4 cos 	−�5 sin 	�

Fig. 2 Effect of a macroscopic strain applied in fiber direction
on „a… mode II, and „b… mode III

Journal of Applied Mechanics MARCH 2008, Vol. 75 / 021009-5

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the fibers. Note that strain mode I consists of a deviatoriclike
mode in the plane of isotropy of the unidirectional laminate �see
Table 1�.

This analysis shows that the response of the composite material
subjected to strain mode II strongly depends on the behavior of
the fibers whereas material response under modes I and III is
dominated by the behavior of the matrix.

Strain mode IV is a pure-shear strain mode loading the mi-
croplanes in such a way that generally both the matrix and the
fibers have an effect. Nevertheless, in the following formulation,
we will assume the shear resistance of the fibers to vanish.

Nonlinear and Softening Behavior of Unidirectional
Laminates. The macroscopic behavior of composite laminates, in
both linear and nonlinear range, is governed by various phenom-
ena occurring in a material microstructure with the three phases—

the fibers, matrix, and fiber-matrix interface. The mechanics of
these phenomena, which include microcracking, stress redistribu-
tion among the phases, fiber pull-out, fiber-matrix debonding, fi-
ber buckling, etc., should be included in formulating constitutive
laws that aim at real predictive capability. However, in practice,
the complexity and the lack of accurate knowledge of the details
of microstructural behavior impede attaining this aim and the only
option available is a phenomenological approach. That is particu-
larly true for tensorial constitutive laws.

The microplane framework, in which the constitutive laws are
formulated in terms of vectors acting on planes of many specified
orientations, provides more flexibility than the classical tensorial
framework and allows introducing in the formulation some micro-
structural features even in a phenomenological setting. In what
follows, the constitutive law at the microplane level is formulated
and physically justified on the basis of current knowledge of dam-
age and failure of the composite laminate microstructure.

Exploiting the experience with microplane models for concrete,
rocks, and soils developed by Bažant and co-workers since the
early eighties, we introduce for the stress-strain constitutive rela-
tion at the microplane level a kinematic constraint of the mi-
croplanes, and we adopt the concept of stress-strain boundary �or
strain-dependent yield limit� introduced in �25� and used in mi-
croplane models M4, M5, and M5f �22,27,28,34�. According to
that concept, for each strain mode, each stress component at the
microplane level must satisfy the following inequalities

FNI
− � �NI � FNI

+ , ��MI� � FTI, ��LI� � FTI �37�

where FNI
− �compression boundary, FNI

+ �tension boundary, and
FTI�shear boundary.

Note that, from the viewpoint of invariance with respect to
rotations of microplane coordinates about the normal to the mi-
croplane, the shear boundary would be expressed more accurately
in terms of the total shear stress �TI= ��MI

2 +�LI
2 �1/2 instead of the

separate components �MI and �LI. However, the boundaries in Eq.
�37�, expressed in terms of components �MI and �LI, lead to sim-
pler and more stable numerical implementation and give about the
same results on the macrolevel.

The boundaries for the normal component of each mode �I
=I , . . . , IV� can be formulated as follows:

FNI
+ = tI����

J=1

4

f IJ
+ ��PJ,��, FNI

− = − cI����
J=1

4

f IJ
− ��PJ,�� �38�

in which angle � gives the position of a generic point along the
meridians of the unit hemisphere �Fig. 1�b��. For �=0, Eqs. �38�
characterize the nonlinear behavior in the direction of the fibers,
and for �=
 /2, in the direction of the matrix. Because of the
transverse isotropy, Eqs. �38� do not involve the angle 	 giving
the position along the parallels of the unit hemisphere �Fig. 1�b��.

The products in Eqs. �38� describe the interaction between dif-
ferent strain modes. In particular, each function f IJ��PJ� gives the
effect of strain mode J on the response of mode I. Obviously, if
f IJ��PJ��1 for I�J, then the strain modes are completely un-
coupled. Furthermore, if f II��PJ��1 also, the behavior is purely
plastic. For the plastic case, the distribution of the microplane
yield strengths in tension and compression is given by tI��� and
cI���, respectively. Note that, in the general case, tI��� and cI���
do not necessarily represent the microplane strength and must be
regarded only as reference strengths.

Similarly, the boundary for the shear components can be for-
mulated as:

Fig. 3 Effect of a macroscopic strain applied in transverse di-
rection on „a… mode II, „b… mode III, and „c… mode I
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FTI = sI����
J=1

4

gIJ��PJ,�� �39�

where sI��� are the shear reference strengths for each mode and
functions gIJ��PJ ,�� have the same meaning as functions
f IJ��PJ ,�� featured by the normal boundaries.

Longitudinal Tension and Compression. Except for a minor
effect of fiber undulations, the matrix and fibers work in parallel
coupling when the composite is subjected to tension or compres-
sion in the direction of the fibers.

In tension, the nonlinear behavior starts when the elastic limit is
reached in the matrix whose strength is significantly lower than
the strength of the fibers. At this point, the fibers are still in the
elastic phase and, consequently, stresses can be redistributed in
the microstructure, allowing an overall increase of the applied
load. The maximum carrying capacity of the unidirectional lami-
nate is attained when the second phase �fibers� fails. However, the
fibers do not fail simultaneously and then it is reasonable to as-
sume a gradual reduction of the macroscopic stress �or softening�
with increasing macroscopic strain. The existence of softening
quasibrittle behavior has been experimentally confirmed by recent
size effect studies �11�.

In the case of compression, the failure is dominated by various
instability modes at the microscopic level �2�. For a low volume
fraction of fibers, compression usually causes fiber kinking due to
microbuckling. For a relatively high volume fraction of fibers,
microbuckling is typically associated with the formation of a kink
band that propagates transversely to the fibers. Very high values of
fiber volume fraction usually prevent microbuckling and the lami-
nate suffers shear failure. Again, as for the case of tension during
failure, a certain degree of stress redistribution occurs in the mi-
crostructure, and then the loss of carrying capacity is gradual as
the strain increases.

As shown in the preceding sections, mode II is the strain mode
that is activated mainly by loading the material in the longitudinal
direction �i.e., the direction of fibers�. Thus, the behavior high-
lighted above can be analytically approximated through the defi-
nition of boundaries on mode II normal and shear components.
This is achieved by setting:

t2��� = t20 cos2 �, c2��� = c20 cos2 �, s2��� = s20 �40�

f22
+ ��P2� = 1 −

�2
+ − k2i

+

k2f
+ , f22

− ��P2� = 1 −
��2

−� − k2i
−

k2f
−

g22��P2� = f22
+ ��P2�f22

− ��P2� �41�

with the conditions 1� f22
+ ��P2��0 and 1� f22

− ��P2��0.
The preceding equations represent linear softening laws for the

normal component in tension and compression while the softening
evolution of the shear component is assumed to be proportional to
the normal boundaries. t20, c20, and s20 are mode II strengths in
tension, compression and shear, respectively. �2

+ and �2
− are the

equivalent strains in tension and compression, respectively, which
couple the effect of shear and normal microplane strains. They are
defined as �2

+=max��2� and �2
−=min��2�, where �2=sign��N2�

���N2
2 +�M2

2 +�L2
2 �1/2�k2i

+ and k2f
+ are two material parameters: k2i

+

defines the tensile strain at which the behavior becomes softening,
and k2i

+ +k2f
+ is the tensile strain at which the carrying capacity is

completely exhausted. k2i
− and k2f

− have the same meaning as k2i
+

and k2f
+ but for compression.

Transverse Tension and Compression. Tensile behavior in the
direction perpendicular to the fibers is mainly controlled by the
fiber-matrix interface. Failure is usually caused by stress concen-
tration at the interface followed by the propagation of cracks
around the fibers �3�. Failure in compression in the transverse
direction is induced by stress concentration in the microstructure,

which leads to the failure of one of the three phases of the com-
posite. In particular, one of the following failure modes may oc-
cur: �1� crushing of the matrix, �2� crushing of the fibers, and �3�
fiber-matrix debonding followed by a macroscopic shear failure.

The modes relevant to these phenomena are strain modes I and
III because they mainly load microplanes in the transverse direc-
tion �Table 1�. Since the failure modes described above are related
mainly to the composite matrix, we can reasonably assume that
the associated reference strengths, in both tension, compression,
and shear, do not depend on the orientation �angle ��: t1���= t10,
t3���= t30, c1���=c10, c3���=c30, s1���=s10, and s3���=s30.

As for the case of the strain mode II, the post-peak behavior of
mode I and mode III is formulated through linear softening con-
stitutive laws. Since strain mode I is quasideviatoric in the plane
of symmetry of the unidirectional laminate, both compression and
tension appear at the microplane level regardless of the sign of the
macroscopic strains in the transverse direction. This does not help
to simulate the lack of symmetry between matrix failures in ten-
sion and compression. The only way to distinguish between these
two types of failure is to let the behavior of strain mode I be
dependent on the mean stress in the plane of isotropy: �̄= ��11
+�22� /2. The mode I boundaries are formulated as follows:

f11
+ ��P1� = 1 −

�1
+ − k1i�

+

k1f�
+ , f11

− ��P1� = 1 −
��1

−� − k1i�
−

k1f�
− , ��̄ � 0�

�42�

and

f11
+ ��P1� = 1 −

�1
+ − k1i�

+

k1f�
+ , f11

− ��P1� = 1 −
��1

−� − k1i�
−

k1f�
− , ��̄ � 0�

�43�

always subjected to the conditions 1� f11
+ ��P1��0 and 1

� f11
− ��P1��0; �1

+ and �1
− are equivalent strains in tension and

compression, respectively, as defined in the case of mode II, and
k1i�

+ , . . . ,k1f�
+ are material parameters.

The boundaries for mode III are formulated as follows:

f33
+ ��P1� = h3 −

�3
+ − h3k3i

+

k3f
+ , f33

− ��P3� = 1 −
��3

−� − k3i
−

k3f
− �44�

with the conditions h3� f33
+ ��P3��0 and 1� f33

− ��P3��0. Again,
�3

+ and �3
− are equivalent strains, and k3i

+ , . . ., k3f
− are material pa-

rameters; h3 is a function of the normal strain of mode II and it is
introduced in the formulation of mode III in tension in order to
prevent an unrealistic splitting-like failure associated with longi-
tudinal compression: h3=1 for �N2�0 and h3=1+h30�2 for �N2
�0.

For both mode I and mode III, the shear boundary is formulated
through the product of tensile and compressive normal bound-
aries: g11��P1�= f11

+ ��P1�f11
− ��P1� and g33��P3�= f33

+ ��P3�f33
− ��P3�.

In-Plane Shear. When the composite is subjected to in-plane
shear, high stress concentrations at the matrix-fiber interface usu-
ally lead to shear failure in the matrix or to fiber-matrix debond-
ing, or to both �4�. The fibers have, in this situation, little effect
and so the relevant microplane boundary �mode IV� can be as-
sumed not to depend on the orientation. Consequently, the tensile
and compressive microplane strengths read t4���= t40, c4���=c40,
s4���=s40. Similar to the other cases, the softening evolution can
be expressed as

f44
+ ��P4� = 1 −

�4
+ − k4i

+

k4f
+ , f44

− ��P4� = 1 −
��4

−� − k4i
−

k4f
−

g44��P4� = f44
+ ��P4�f44

− ��P4� �45�

with 1� f44
+ ��P4��0 and 1� f44

− ��P4��0. The variables and pa-
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rameters in Eq. �45� have meaning similar to the case of mode II.
The formulation presented so far is based on the assumption

that the strain modes are substantially independent. As it will be
shown in the companion paper �45�, even if it is possible to
closely reproduce with this assumption the uniaxial behavior of
the composite, the simulation of shear versus normal stress
strength envelopes is not accurate. A mild interaction between
modes significantly improves the fitting of these envelopes and
enhances the overall predictive capability of the model. A detailed
discussion of this interaction will appear in the subsequent com-
panion paper.

Fracture Mechanics Aspects. Based on the data from the lit-
erature, it is impossible to identify the equilibrium post-peak soft-
ening curve because in all the tests either the machine stiffness
was too low or the specimen size too large to keep the response
stable �Sec. 13.2 in �5��. Nevertheless, the mean slope of the post-
peak softening curve, or the area under it, can be identified from
the value of fracture energy GF and the material characteristic
length l0 representing roughly the FPZ width, which in turn is
approximately equal to the minimum possible spacing h of paral-
lel cracks or the crack band width in the crack band model.

The crack band width can be roughly estimated from visual
observations of fracture and typically equals 1.5 to 2 times the
material inhomogeneity size �such as spacing of the weave of
reinforcing fabric, spacing of fiber strands, or of lamina, etc.�. GF
can be most easily determined from size effect tests �16,46�, as
shown in �9,11�. Since �p /En+�p /Et=Gf / l0�area under the post-
peak softening curve and the elastic unloading curve of slope Et
emanating from the peak stress point �Fig. 4�. If this curve is
assumed to be linear, its slope can be calculated as

Et = − � Gf

l0�p
−

1

En
−1

�46�

provided that both Gf and l0 are known; here �p�peak stress
across the fracture plane, and En pertains to stress across the ex-
pected crack plane; Et can be positive or negative, and for a ver-
tical drop it is �. An equation analogous to �46� is used in the
crack band model �Sec. 13.2 in �5��.

A more detailed discussion of fracture simulation with the
present model is beyond the scope of this paper and is planned for
subsequent study.

Closing Comment. The spectral stiffness microplane model
developed here has several attractive features that need to be
translated into a computational algorithm and verified by compari-
son. This is pursued in the second part of this study, which fol-
lows.
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Spectral Stiffness Microplane
Model for Quasibrittle Composite
Laminates—Part II: Calibration
and Validation
The spectral stiffness microplane (SSM) model developed in the preceding Part I of this
study is verified by comparisons with experimental data for uniaxial and biaxial tests of
unidirectional and multidirectional laminates. The model is calibrated by simulating the
experimental data on failure stress envelopes analyzed in the recent so-called “World
Wide Failure Exercise,” in which various existing theories were compared. The present
theory fits the experiments as well as the theories that were best in the exercise. In
addition, it can simulate the post-peak softening behavior and fracture, which is impor-
tant for evaluating the energy-dissipation capability of composite laminate structures.
The post-peak softening behavior and fracture are simulated by means of the crack band
approach which involves a material characteristic length. �DOI: 10.1115/1.2744037�

Keywords: fiber composites, laminates, spectral methods, microplane model, fracture
energy, crack band model, damage, failure criteria

Introduction

In Part I of this study �1�, a new three-dimensional constitutive
model for transversely isotropic �unidirectional� composite lami-
nates has been proposed in the framework of a kinematically con-
strained spectral stiffness microplane �SSM� model �2�. The for-
mulation exploits the spectral decomposition of the orthotropic
stiffness matrix to decompose the strain tensor into four orthogo-
nal strain modes. Strain Modes I and III govern the transverse
behavior �which is matrix dominated�, Mode II governs the lon-
gitudinal behavior �which is fiber dominated�, and Mode IV gov-
erns the behavior in pure shear. This mode decomposition is a
generalization of the deviatoric-volumetric split already adopted
in the formulation of microplane models for isotropic materials
�3,2�. As it will be seen, in the elastic regime, the four strain
modes can be considered to be uncoupled, whereas in the inelastic
regime a certain degree of coupling is necessary to achieve good
fits of the experimental results.

In the present Part II, the model will be calibrated and validated
by comparing numerical results to published experimental data
found for typical uniaxial and biaxial tests. Simulations of the
behavior of unidirectional and multidirectional carbon–epoxy
laminates �AS4 3501-6� will be compared with the experimental
data reported in Refs. �4,5� �and references therein�. This collec-
tion of data was used in the “World Wide Failure Exercise” �6–8�,
for the purpose of comparing the accuracy of several failure cri-
teria for laminates. Among them, the Tsai–Wu criterion �9� per-
formed the best.

The literature, unfortunately, does not include, for one and the
same laminate, a complete set of test data for both the multiaxial
failure envelopes and the stress-strain behavior, not even the
uniaxial behavior. Therefore, the failure envelopes from other

kinds of laminates in Ref. �5� will be scaled, in a proper way, to
deduce the likely form of the missing experimental curves for the
carbon–epoxy laminates studied here.

The calibrated model will subsequently be used to predict the
behavior of multidirectional laminates. Only short-time loading,
for which creep is unimportant, and loading rates low enough for
dynamic wave propagation effects to be absent, will be consid-
ered. All the definitions and notations from Part I will be retained.

Elastic Behavior of Unidirectional Laminates
The elastic behavior of unidirectional carbon–epoxy laminates

depends on the elastic properties of the epoxy matrix, and the
elastic properties of the fibers. Micromechanical models might be
used to get approximate values of the elastic moduli of the lami-
nates based on the experimental data for their components. How-
ever, it is preferable to deduce these moduli from the experimental
data measured for the given laminate. The experimental elastic
properties for carbon/epoxy AS4 3501-6 reported in Ref. �4� are:
E33=126 GPa, E11=11 GPa, �12=0.4, �31=0.28, and G13
=6.6 GPa, where E33�longitudinal modulus �in the fiber direc-
tion�; E11�transverse modulus �in the direction orthogonal to the
fibers�; �12=�21�transverse Poisson ratio; �31 �=�32��major
Poisson ratio; and G13 �=G23��in-plane shear modulus. Note that
the longitudinal modulus E33 is actually a secant modulus because
the elastic uniaxial stress-strain curve shows �Fig.2� a stiffening
behavior due to straightening of the fibers in tension. In absence
of more precise experimental data, the same elastic modulus is
also assumed to govern the elastic behavior for compression in the
longitudinal direction.

The elastic moduli at the microplane level are easy to identify
because they equal the eigenvalues of the stiffness matrix �1� as-
sociated with the elastic parameters introduced previously, which
are: �1=7.9 GPa, �2=145.4 GPa, �3=18.2 GPa, and �4
=13.2 GPa. The microplane elastic stiffness relevant to strain
Mode II ��2� is significantly larger than the others ��1, �3, and
�4�. This confirms that strain Mode II is the mode governing the
laminate behavior for loading in fiber direction.
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Uniaxial Stress-Strain Curves of Unidirectional Lami-
nates

For the uniaxial case, the calibration procedure consists of two
steps. First the experimental stress-strain curves are matched in
the prepeak region. The post-peak softening parameters are ad-
justed to match the fracture energy, for which the width of the
localization band h �10�, representing a material characteristic
length, is also needed. In theory, the value of h must be obtained
from the fracture energy measured a priori by fracture tests. How-
ever, since no data are available, an educated guess based on the
size of the inhomogeneities is the only option left. We consider the
localization band width of h=2 mm �for specimens of length L
=100 mm� and we assume the same band width for fracture, com-
pression failure, and shear failure. Doubtless, this assumption is
crude and, in general, different band widths may be expected to be
associated with different phenomena. Nevertheless, by experience
with other materials �11�, this assumption seems adequate for fi-
nite element simulations, and having only one band width is con-
venient since the characteristic finite element size is usually made
to coincide with this width.

Let us now analyze the laminate behavior under transverse
compression and tension. The experimental data available for
these loading conditions are the peak stress in tension and com-
pression �F1t=48 MPa, F1c=−200 MPa�, peak strains in tension
and compression ��1t=4.36 �strain, �1c=−20 �strain�, stress-
strain curve in compression up to the peak, and the interlaminar
fracture energy �GF

t =220 J /m2� identified from a double cantile-
ver beam specimen �4�. The interlaminar fracture energy can be
assumed to be a good approximation of the transverse fracture
energy. This assumption is supported by Daniel and Lee’s �12�
measurements of the progressive damage in �0n /90m�s coupons of
graphite–epoxy, in which the 90 deg layers fractured and the
0 deg layers remained elastic. From these experiments, it is pos-

sible to deduce the fracture energy in transverse direction, and its
value turns out to be very close to the aforementioned value of the
interlaminar fracture energy.

The transverse behavior is governed by Mode I and Mode III
�1�. The identified microplane parameters that fit the aforemen-
tioned macroscopic properties �for h=2 mm� are t10=c10

=180.0 MPa, k1i�
+ =k1i�

− =7.0�10−6, k1f�
+ =k1f�

− =20.0�10−6, k1i�
+

=k1i�
− =0.0, k1f�

+ =k1f�
− =4.0�10−6, t30=32.0 MPa, k3i

+ =0.01
�10−6, k3f

+ =5.0�10−6, c30=180.0 MPa, k3i
− =4.0�10−6, k3f

−

=10.0�10−6n, s10=77 MPa, and s30=90 MPa.
Figures 1�a� and 1�b� show the stress-strain boundaries of the

microplane normal component for Mode I �tension� and Mode III
�tension and compression� according to the foregoing parameters.

The parameters of Mode I compressive boundary are assumed
to be equal to those of the tensile boundary. This assumption is
necessary because strain Mode I is a quasideviatoric mode in the
plane of isotropy exhibiting both tension and compression at the
microplane level, regardless of the sign of the applied macro-
scopic transverse stress. The macroscopic behavior is, of course,
not symmetric and the tensile strength is much smaller than the
compressive strength. To take into account this asymmetry, the
Mode I boundary has been made to depend upon the mean stress
	̄ in the plane of isotropy �Fig. 1�a��; 	̄ provides a measure of
confinement of the fiber and permits distinguishing between Mode
I strains associated with the macroscopic transverse tension �	̄

0� and with the macroscopic transverse compression �	̄�0�.

Because of the lack of data in the post-peak portion of the
compressive stress-strain curve, parameters k1i�

− , k1i�
− , k1i�

− , k1i�
− ,

k3i
− , and k3f

− cannot be properly calibrated. The reported values are
obtained by matching only the pre-peak nonlinearity �Fig. 2�d��.
The identification of these parameters is, of course, less than sat-
isfactory and further studies are needed.

Figures 2�c� and 2�d� compares the experimental data �points�

Fig. 1 Stress-strain boundary for the microplane normal component of: „a… Mode I; „b…
Mode III; „c… Mode II; and „d… Mode IV
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with the calculated stress-strain curves �solid lines� for h=2 mm.
The curves clearly exhibit snapback �13�, which explains why, in
experiments, the failure of laminates is dynamic and sudden, mak-
ing the post-peak equilibrium curve unobservable.

For comparison, Figs. 2�c� and 2�d� also show the stress-strain
curves obtained with the aforementioned parameters and h
=20 mm. Of course in this case the fracture energy turns out to be
ten times larger than the experimental value.

As far as the uniaxial behavior in the fiber direction is con-
cerned, the available experimental data consist of the peak stress
in tension and compression �F3t=1950 MPa, F3c=1480 MPa�,
peak strain in tension and compression ��3t=13.8�10−6, �3c=
−11.75�10−6�, and the stress-strain curve in tension up to the
peak. Data are available on the post-peak for neither tension nor
compression. The peak stress in tension is matched by setting
t20=1950 MPa and k2i0

+ =15.0�10−6.
The fitting of the compressive peak stress is slightly more com-

plicated because high compressive stress in the direction of the
fibers generates Mode III tensile stresses on those microplanes
whose normal orientation is close to the transverse direction.
These stresses must quickly lead to a splitting-like failure because
of the low tensile strength associated with Mode III. The experi-
mental results, however, do not indicate this kind of failure. On
the contrary, they show the failure to be triggered by microbuck-
ling of the fibers. Since microbuckling must be associated with
Mode II, and not with Mode III, the splitting-like failure must be
somehow prevented in these simulations. To this end, the peak of
Mode III normal boundary is radially scaled up as a function of
the negative Mode II strain �Fig. 1�b��. The radial scaling is for-
mulated through functions h3

+ abd k3i
+ presented in Part I �1�. The

identified microplane parameters are c20=1480 MPa, k2i
− =10.0

�10−6, s20=77 MPa, and h3=580 �h3 governs the radial scaling
of the boundary associated with Mode III as a function of the
negative normal strain of Mode II�.

In absence of any information about the post-peak part of the
stress-strain curves, it is impossible to identify from such curves
parameters k2f

+ and k2f
− that define the post-peak slope of the nor-

mal boundary, associated with Mode II for tension and compres-
sion, respectively. We assume k2f

+ =k2f
− =8.0�10−6. Figure 1�c�

shows the compressive and tensile boundaries for Mode II used in
the numerical simulations, and Figs. 2�a� and 2�b� show the com-
parison between the experimental data �points� and the numerical
simulations �solid lines�.

To conclude the analysis of uniaxial behavior of the unidirec-
tional laminate, we need to analyze the response under macro-
scopic in-plane shear stress. This response is governed solely by
the strain Mode IV �1�. The optimization of the relevant mi-
croplane model parameters can be done by fitting the stress-strain
curve, which, however, was available only up to the peak. The
best fits, shown in Fig. 3, have been obtained by setting t40=c40
=77.0 MPa, k4i

+ =k4i
− =8.9�10−6. We also assumed that k4f0

+ =k4f0
−

=10.0�10−6. These last two parameters govern the undocu-
mented post-peak segment of the curve.

Biaxial Failure Envelope of Unidirectional Laminates
Without Mode Interaction

Let us now analyze failure of the carbon–epoxy unidirectional
laminates under biaxial loading. Following the “World Wide Fail-
ure Exercise,” we consider three different biaxial loading condi-
tions: �1� transverse and in-plane shear loadings; �2� longitudinal

Fig. 2 Uniaxial stress-strain curves. Comparison between numerical simula-
tions „solid line… and experimental results „points… from Soden et al. †4,5‡… for:
„a… tension in fiber direction; „b… compression in fiber direction; „c… tension in
transverse direction; and „d… compression in transverse direction

Fig. 3 Comparison between numerical simulations „solid line…
and experimental results „points… from Soden et al. †4,5‡ for
shear loading
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and in-plane shear loadings; and �3� longitudinal and transverse
loadings. Unfortunately, the associated failure envelopes available
in the literature and reported in Ref. �5� were measured on three
different kinds of laminates. To check the ability of the model to
predict, with the same set of parameters, the response of unidirec-
tional carbon–epoxy laminates under all the three aforementioned
loading conditions, the biaxial failure envelopes are assumed to be
scaled radially according to the uniaxial strengths.

Figure 4 compares the experimental data �points�, the mi-
croplane model prediction �solid line�, and the prediction of the
Tsai–Wu criterion �dashed line�, which performed the best during
the “World Wide Failure Exercise.”

In the first quadrant �tension–tension�, the microplane model,
and the Tsai–Wu criterion agree quite well for matrix-dominated
failures �low and moderate longitudinal stresses�. For high longi-
tudinal stresses, the Tsai–Wu criterion is more conservative than
the microplane model. Unfortunately, the experimental results do
not help to validate one theory more than the other because they
are quite scattered and lie in the middle between the two predicted
curves. In the second quadrant �longitudinal tension—transverse
compression� the agreement between the two theories and the ex-

perimental results is excellent. The same good agreement can be
seen in the fourth quadrant �transverse tension—longitudinal com-
pression�.

An important discrepancy between the microplane model and
the Tsai–Wu criterion is in the third quadrant �compression–
compression�, in which the Tsai–Wu criterion predicts a much
larger strength than the microplane model. Unfortunately, there
are no experimental data available to check which theory is cor-
rect.

Figure 5�a� shows the failure envelopes for transverse and in-
plane shear loading. In this case, the microplane model prediction
resembles the maximum stress criterion and is poor. The predic-
tion of the Tsai–Wu criterion is somewhat better but it does not
predict the skew character of the envelopes, which shows that the
shear strength in the presence of transverse compression is higher,
as expected. A similar picture arises from analyzing the failure
envelope for longitudinal and in-plane shear loading. Without
mode interaction �Fig. 5�c��, the prediction of the microplane
model cannot be fully accurate, but still is reasonable.

Formulation With Mode Interaction
Performance of the microplane model can be significantly en-

hanced even if only a limited interaction between the strain modes
is introduced. In Fig. 5�a�, the vertical portions of the envelope are
associated with failures in the matrix and fiber-matrix interface.
Consequently they are governed by Modes I and III. On the con-
trary, the horizontal portion of the envelope is associated with
pure shear failure and is governed by Mode IV. Therefore, to
match the experimental data, one needs to introduce interaction
between Modes I, III and Mode IV. This can be achieved by
formulating the following interaction functions

f14
+ ��P� = f14

− ��P� = g14��P� = f34
+ ��P� = f34

− ��P� = g34��P� = 1 + �4�4

�1�

f41
+ ��P� = f41

− ��P� = g41��P� = �1 − sign��N3���N1�/�1� �2�

where �4=�4
− for 	̄�0, and �4=�4

+ for 	̄
0.
The best fit of the failure envelope in Fig. 5�b� can be obtained

upon setting �4
+=0.1, �4

−=0.02, and �1
+=0.002. The microplane

Fig. 4 Comparison between numerical simulations „solid line…,
Tsai–Wu criterion „dashed line…, and experimental results
„points… from Soden et al. †4,5‡ for multiaxial failure envelope
with: „a… no interaction of modes; and „b… with interaction

Fig. 5 Comparison between numerical simulations „solid line… and experimen-
tal results „points… from Soden et al. †4,5‡ for uniaxial loading in fiber direction
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model prediction is now in good agreement with the experimental
data and is more accurate than the prediction of Tsai–Wu criterion.

The microplane prediction of the failure envelope in Fig. 5�c�
can also be improved through mode interaction. In this case, the
relevant modes are Mode II �behavior in fiber direction� and Mode
IV �pure shear�, and so it is these two that should be linked. The
effect of Mode IV on Mode II is formulated in the same manner as
the effect of Mode IV on Modes I and III

f24
+ ��P� = f24

− ��P� = g24��P� = 1 + �4�4 �3�
In addition, the effect of Mode II on Mode IV can be formu-

lated as follows

f42
+ ��P� = f42

− ��P� = g42��P� = �1 − �2�N2� �4�

where �x�=max�x ,0�. The best fit of the failure envelope, shown
in Fig. 5�d�, is obtained by setting �2=50.

Analysis of Multidirectional Laminates
A widely used laminate layup is �90 / +45 /−45 /0�S, which is

quasi-isotropic. Several authors studied the AS4/3501-6 carbon–
epoxy quasi-isotropic laminate. The relevant data and reference to
the original publications can be found in Ref. �5�. The tests were
carried out by subjecting tubular specimens to pressure and axial
loads. To avoid spurious ruptures at the connections with the load-
ing platens, the specimens had been reinforced at the ends. Be-
cause of this end constraint, it is reasonable to assume that the
specimens could not have experienced any torsional rotation. This
means that the plies were subjected only to longitudinal and cir-
cumferential �hoop� strains, and that the shear strains vanished in
all the plies. This, in turn, implies the appearance of shear stresses
in the +45 and −45 plies. These stresses are important and, if
neglected, lead to a significant underestimation of the laminate
strength.

The behavior of this multidirectional laminate is here simulated
assuming each ply to be governed by the microplane model for
unidirectional laminates �see Part I, �1�� and calibrated in the pre-
ceding sections. At this stage, no adjustment to the model param-
eters is allowed, so that the numerical solution would truly be a
prediction. An iterative Newton–Rapson procedure is used to con-
verge to a vanishing out-of-plane normal stress for all plies.

Figure 6 shows a comparison between the experiments �data
points�, the microplane model prediction �solid line�, and the pre-

diction of the Tsai–Wu criterion �dashed line�. The microplane
model theory agrees very well with the experimental data in the
tension-tension quadrant of the envelope. For the tension-
compression quadrant, the prediction is less accurate but still sat-
isfactory. However, marked disagreement is found in the
compression-compression quadrant, in which both the microplane
model and the Tsai–Wu criterion severely overestimate the lami-
nate strength. This shortcoming is, most probably, due to the fact
that the microplane calibration for the unidirectional laminate
could not rely on any data for the compression-compression quad-
rant.

Conclusions

1. The spectral decomposition theorem is a powerful tool to
analyze generally anisotropic materials. This is the only
known exact and rigorous approach for the anisotropic gen-
eralization of the microplane model.

2. The mechanical behavior of laminate composites can be
subdivided into characteristic loading conditions represent-
ing the longitudinal tension or compression, transverse ten-
sion or compression, and shear, most of which are domi-
nated by one spectral mode, and none by more than two
spectral modes.

3. Interaction of modes, which it has been possible to avoid,
with minor exceptions, in the previous microplane formula-
tions, helps to achieve better fit of some experimental mul-
tiaxial failure envelopes of laminates. Even if this interaction
is not dominant, its neglect always causes a single mode to
reach its strength limit before the others, which impairs the
fits of some multiaxial data.

4. The present SSM model describes well the experimentally
observed behavior of fiber composites, not only for uniaxial
stress-strain curves, but also for multiaxial failure envelopes.
The fitting capabilities for multiaxial failure envelopes are
superior to the Tsai–Wu criterion, which has so far been
considered as overall the best model for laminates.

5. The main advantage of the SSM model is that one and the
same model can simulate the orthotropic stiffness, failure
envelopes, and the post-peak behavior, which include strain-
softening damage and fracture mechanics aspects. This fur-
ther implies that the SSM model must be able to automati-
cally predict the energetic size effect.

6. The material parameters of the SSM model can be identified
from experiments by a sequential procedure. Post-peak data
are needed to identify the parameters governing the soften-
ing, and an estimate can be based on the width of the local-
ization band taken equal to the inhomogeneity size.

7. The experimental failure envelopes can be represented by
the present model as well or better than with the existing
failure criteria, including Tsai–Wu.

8. Although, due to stability limitations of current testing, post-
peak measurements are missing, the post-peak softening
curve can be approximately inferred from the notched frac-
ture energy test and an estimate of the fracture process zone
width.

9. The SSM model can be implemented as a material subrou-
tine in finite element codes, either implicit or explicit. From
experience with microplane models for concrete �used in the
commercial code ATENA� the kinematically constrained for-
mulation is known to be very stable in finite element
analysis.
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Appendix: Calibration Procedure
The procedure of sequential identification of microplane model

parameters may be summarized as follows:

�1� Identify elastic parameters �1, �2, �3, and �4 �eigenvalues
of the stiffness matrix� on the basis of the measured elastic
properties �see Eqs. �28�–�31� in Ref. �1�.

�2� Identify parameters t20, c20, and s20 on the basis of the
uniaxial tensile, compressive, and shear strength in the fiber
direction.

�3� Identify parameters k2i
+ , k2f

+ , k2i
− , k2f

− according to the post-
peak softening behavior of the unidirectional lamina tested
in fiber direction.

�4� Identify parameters t10, c10, s10, t30, c30, and s30 on the basis
of the uniaxial tensile, compressive, and shear strength in
the direction transverse to the fiber.

�5� Identify parameters k3i
+ , k3f

+ , k3i
− , k3f

− , k1i�
+ , k1i�

− , k1f�
+ , k1f�

− ,
k1i�

+ , k1i�
− , k1f�

+ , k1f�
− according to the post-peak softening

behavior of the unidirectional lamina tested in direction
transverse to the fiber.

�6� Identify parameters t40, c40, s40, k4i
+ , k4i

− , k4f
+ , k4f

− according to
the in-plane shear strength and post-peak softening charac-
teristics of the unidirectional laminate.
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Synchronization of Multiple
Chaotic Gyroscopes Using the
Fundamental Equation
of Mechanics
This paper provides a simple, novel approach for synchronizing the motions of multiple
“slave” nonlinear mechanical systems by actively controlling them so that they follow the
motion of an independent “master” mechanical system. The multiple slave systems need
not be identical to one another. The method is inspired by recent results in analytical
dynamics, and it leads to the determination of the set of control forces to create such
synchronization between highly nonlinear dynamical systems. No linearizations or ap-
proximations are involved, and the exact control forces needed to synchronize the non-
linear systems are obtained in closed form. The method is applied to the synchronization
of multiple, yet different, chaotic gyroscopes that are required to replicate the motion of
a master gyro, which may have a chaotic or a regular motion. The efficacy of the method
and its simplicity in synchronizing these mechanical systems are illustrated by two nu-
merical examples, the first dealing with a system of three different gyros, the second with
five different ones. �DOI: 10.1115/1.2793132�

1 Introduction
Gyrodynamics is an area of mechanics that has been of signifi-

cant interest for more than a century to both the scientific and the
engineering communities. Gyroscopes, from a purely scientific
viewpoint, show many strange and interesting properties, and
from an engineering viewpoint, they have great utility in the navi-
gation of aircraft, rockets, and spacecraft and in the control of
complex mechanical systems. It has been known for some time
now �1–6� that symmetric gyros, when subjected to harmonic ver-
tical base excitations, exhibit a variety of interesting dynamic be-
haviors that can span the range all the way from regular to chaotic
motions. Various investigators have looked at gyro models that
involve different types of damping, the most common type being
linear plus cubic �3–5�. Depending on the parameters that describe
these gyrosystems, they can exhibit fixed points, periodic behav-
ior, period doubling behavior, quasiperiodic behavior, and chaotic
motions.

Synchronization of two chaotic systems is an important prob-
lem in nonlinear science, and it has received considerable atten-
tion in recent years since it was first carried out by Pecora and
Carroll �7� and Lakshmanan and Murali �8�. When one has more
than one gyro operating in a mechanical system, synchronizing
these gyros so that a master gyro drives a bunch of slave gyros in
such a manner that the slaves “exactly” replicate the motion of the
master is a problem of considerable interest both in navigation and
in the transmission of encrypted messages �9�. While many re-
searchers have considered the synchronization of two coupled
chaotic systems whose motions may or may not synchronize de-
pending on the coupling between them, in this paper we consider
the synchronization of a set of “slave” mechanical systems that
may or may not be coupled, each synchronized to the motions of
an independent “master” mechanical system.

The way the synchronization of the motion of two chaotic sys-
tems has been usually achieved—the systems are usually, it ap-
pears, taken to be identical, but starting with different initial

conditions—is through the application of a control signal �a cou-
pling� to one of them �the slave system�, which is often some
linear or nonlinear function of the difference in the motion be-
tween the master and the slave. The methodology is perhaps best
described as belonging to a kind of generalized feedback control
philosophy. For example, Chen �4� considered two identical cha-
otic gyros, used a variety of such control laws, and showed that
when the feedback gain exceeds a certain value, the slave gyro
synchronizes with the master gyro. The value of this feedback
gain, above which such synchronization occurs, is typically ob-
tained through numerical experimentation �4�. Modern nonlinear
control theory has also been used to look at the gyro synchroni-
zation problem. Here, the system is conceived as an autonomous
set of first order nonlinear differential equations, and the differ-
ence in the response between the master and the slave gyro is
taken to be an error signal. A suitable time-varying control is then
applied to the slave gyro to drive this error signal to zero. Often,
this is done by using feedback linearization; the nonlinear terms in
the equation governing the error signal are eliminated, and then
standard linear feedback control theory is applied �10�. Such strat-
egies, which may be commonly found in the literature, become
difficult, if not impossible, to use when we have many slaves that
may be coupled to one another �not just one� and that need to be
driven to yield the same motions as a single independent master,
and especially so when the dynamical characteristics of these
slaves are not identical with one another and/or with those of the
master gyro. Considering that it is very difficult to exactly repli-
cate the properties of multiple mechanical systems even when
they “seem” identical, it is interesting that the problem of driving
nonidentical slaves using a master that may also be different from
each of the slaves has only recently begun to be broached in the
nonlinear science literature �11,12�.

In this paper, we explore a new and different strategy for syn-
chronizing the response of n nonlinear mechanical systems that is
inspired by some recent advances in analytical dynamics �13�. We
consider a system of n gyros—not necessarily identical—some, or
all, of which may exhibit a chaotic behavior, and we pose the
problem of synchronizing the motion of all the others with, say,
that of the ith gyro �the master�. We frame this in the context of a
tracking control problem, in which the n−1 slave gyros are re-
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quired to exactly track the motion of the master gyro. We then
further reformulate the tracking problem as a problem of con-
strained motion, where we want the control �constraint� forces to
be such that all the gyros, which are highly nonlinear systems, are
constrained to have the same motion. We use the explicit closed
form analytical control given by the fundamental equation �13� to
then yield the control force that will cause, in a theoretical sense,
exact synchronization of these gyros. We show that this approach
to the synchronization of such gyroscopic systems—and, indeed,
general nonidentical, nonlinear mechanical systems—which is
based on these deeper results from analytical mechanics, has sev-
eral advantages, most important of which are that the control
forces obtained are continuous functions of time and that they can
be found in closed form and hence can be determined simply and
efficaciously. Furthermore, in a sense, the minimum forces that
need to be exerted to synchronize these nonlinear systems are
obtained, and they yield, theoretically speaking, exact synchroni-
zation. As we shall show, of some importance is the fact that the
manner in which synchronization is achieved can be controlled
easily and with little difficulty.

The paper is organized as follows. In Sec. 2, we provide a brief
description of the equation of motion of a symmetric gyro sub-
jected to a vertical periodic base motion. We use the Lagrangian
approach and obtain the requisite equations of motion. In Sec. 3,
we present the fundamental equation that provides the explicit
equation of motion for general nonlinear mechanical systems that
are constrained. In Sec. 4 �and in Appendix B�, we apply the
fundamental equation to the problem of synchronizing n gyros,
providing a closed form solution to the determination of the con-
trol forces required to be applied to each of these nonlinear sys-
tems that yields exact synchronization of their motions. In Sec. 5,
we present several numerical results to illustrate the behavior of
the proposed control, and its simplicity and efficacy. In the last
section, we present our conclusions.

2 Equation of Motion for the Symmetric Gyro
Consider the symmetric gyro, whose point of support, o, under-

goes a vertical harmonic motion of frequency � and amplitude d0,
as shown in Fig. 1. Using the Euler angles � �nutation�, � �pre-
cession�, and � �spin� �14�, the Lagrangian for the system is given
by �see Appendix A1�

L =
1

2
I��̇2 + �̇2 sin2 �� +

1

2
I3��̇ + �̇ cos ��2 − mrḋ�̇ sin �

− mgr cos � �1�

where m is the mass of the gyro, Iª I1+mr2, I1= I2 is the principal
equatorial moment of inertia through the center of mass �c.m.� of
the gyro, and I3 is the polar moment of inertia about the symmetry
axis. In Fig. 1, the point of support of the gyro is denoted by o, so
that the moments of inertia about the axes ox and oy are each
equal to I. The dots in Eq. �1� refer to differentiation with respect
to time t. The quantity r denotes the distance along the polar axis
of the c.m. of the gyro from its point of support, and d�t�
=d0 sin �t is the time-varying amplitude of the vertical support
motion that has frequency �.

Since � and � are cyclic coordinates, the corresponding angular

momenta p�= I3��̇+ �̇ cos �� and p�= I�̇ sin2 �+ p� cos � are con-

served. The angular velocities �̇ and �̇ can be eliminated by using
the Routhian �14�,

R��, �̇,t� = L − p��̇�p�,p�,�� − p��̇�p�,p�,�� �2�

The equation of motion, which is given by �d /dt���R /��̇�
−�R /��=Fd, then reduces to

I�̈ +
�p� − p� cos ���p� − p� cos ��

I sin3 �
− mgr sin � − mr sin �d̈�t� = Fd

�3�

where Fd is the nonconservative force of damping, which we take

here to be of linear-plus-cubic type �3�, so that Fd=−ĉ�̇− ê�̇3.
Along with previous researchers �2–5�, for simplicity, we only
consider damping related to the � coordinate.

Were we to further assume that p�= p�= p̄ �which permits the
gyro to be in the so-called “sleeping” position, removing the sin-
gularity in Eq. �2��, Eq. �3� can be further simplified to

�̈ + �2 �1 − cos ��2

sin3 �
+ c�̇ + e�̇3 − � sin � = − � sin � sin �t �4�

Under this assumption, Eq. �4� then is the differential equation
that describes the motion of the symmetric gyro, where we have
denoted �= p̄ / I, c= ĉ / I, e= ê / I, �=mgr / I, and �=�2mrd0 / I. The
parameter set P= �� ,� ,c ,e ,� ,�� specifies the physical character-
istics of the gyro and the harmonic vertical motion of the base on
which it is supported. It may be pointed out that no assumption on
the magnitude of the vertical displacement d0 of the base has been
made in arriving at this equation. We note in passing that no
singularity arises in Eq. �4� due to the sin � term in the denomi-
nator in Eq. �4�.

3 Fundamental Equation
This equation deals with the explicit equation of motion for a

mechanical system when the system is constrained to satisfy a set
of consistent constraints. Consider an unconstrained discrete me-
chanical system whose equation of motion is described by the
equations

1We provide the Lagrangian in Appendix A. This is specifically because the La-
grangian given in Ref. �2� is incorrect and, consequently, the equation of motion
obtained from it is also invalid. Unfortunately, this error has found its way into the
current literature dealing with this topic, as in Refs. �1–5� and Ref. �10�.

Fig. 1 Symmetric gyroscope with vertical support excitation
d„t…=d0 sin„�t…
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M�t,q�q̈ = f�q,q̇,t� q�0� = q0 q̇�0� = q̇0 �5�

where M is an n�n symmetric, positive definite matrix, the n
vector q represents the generalized coordinates used to describe
the configuration of the system, and the right hand side is a known
function of q, q̇, and t. The dots refer to differentiation with re-
spect to time. By unconstrained we mean here that the compo-
nents of the initial velocity q̇0 can be arbitrarily specified. Equa-
tion �5� results from the application of Lagrange’s equations to a
mechanical system, or from Newtonian mechanics.

Let this system be subjected to a set of s constraints of the form

h„q�t�… = 0 �6�
that are satisfied by the initial conditions so that

h�q0� = 0 and ḣ�q0,q̇0� = 0 �7�

Here, h, is an s vector. Differentiating Eq. �6� twice with respect
to time, we obtain the set of matrix equations

A�q,q̇�q̈ = b�q,q̇� �8�

where A is an s�n matrix. The equation of motion of the con-
strained system that satisfies these constraints exactly is then ex-
plicitly given by �13�

Mq̈ = f�q,q̇,t� + Fc�q,q̇,t� �9�
where

Fc�q,q̇,t� = M1/2�AM−1/2�+�b − AM−1f� �10�

Here, X+ denotes the Moore–Penrose �MP� inverse of the matrix
X �see Ref. 13�. We shall denote the n components of the n vector
Fc by f i

c, i=1,2 , . . ., n. We notice that the constraint �Eq. �6�� is
actually implemented as Eq. �8�. In what follows, we shall sup-
press the arguments of the various quantities unless needed for
clarity.

When relations �7� are not satisfied by the initial conditions,
one could replace the equation set �Eq. �8�� by any other system of
constraint equations �15� whose solution asymptotically tends to
h=0, as t→	. For example, the system of equations

ḧ + �ḣ + �h = 0 �11�

where � and � are diagonal matrices with positive entries, would
lead to h→0 exponentially, as t→	, and could be used by plac-
ing it in the form given in Eq. �8�. It should be pointed out that the
force Fc given by Eq. �10� minimizes, at each instant of time, the
quantity �Fc�TM−1Fc—the weighted norm of the active control
force Fc �13�.

The general results obtained in analytical mechanics �see Ref.
�13� for more details� are far more extensive than those presented
above; here, we have particularized them to only cover the present
problem of interest—synchronization of n nonidentical gyro-
scopes �see Ref. �15� for a more extensive treatment�.

4 Synchronization of n Different Gyros
Consider n different, independent gyros described by the non-

autonomous nonlinear equations,

�̈i = − �i
2 �1 − cos �i�2

sin3 �i
− ci�̇i − ei�̇i

3 + �i sin �i − ��i sin �i�sin �it

i = 1,2, . . . ,n �12a�

ª f i��i, �̇i,t;Pi� i = 1,2, . . . ,n �12b�
with

�i�t = 0� = �i
0 and �̇i�t = 0� = �̇i

0 i = 1,2, . . . ,n �13�

We have explicitly included the parameter set Pi
= ��i ,�i ,ci ,ei ,�i ,�i� on the right hand side of Eq. �12b�, indicat-
ing that each of the n symmetric gyros could have different physi-

cal characteristics and may be mounted on surfaces that harmoni-
cally vibrate vertically at different frequencies and with different
amplitudes of vibration.

Our aim is to synchronize the motion of all n gyros so that n
−1 of them “follow” the motion of the master gyro. Without any
loss of generality, from here on we shall take the master gyro to be
the first gyro in our set of n gyros and refer to it �the master gyro�
by the subscript 1. Hence, we require

�i�t� = �1�t� i = 2, . . . ,n �14�

where �1�t� is the solution of the nonlinear, nonautonomous dif-
ferential equation given in Eq. �12a� with i=1. We note that the
equation set �Eq. �14�� constitutes a set of n−1 independent con-
ditions. The problem of synchronization can be interpreted as one
of ensuring that the tracking conditions �Eq. �14�� are satisfied by
the gyros whose equations of motion are given by Eqs. �12a� and
�12b�. Alternatively, we think of this problem as one in which Eqs.
�12a�, �12b�, and �13� represent an unconstrained, n degree of
freedom, mechanical system on which the n−1 independent con-
straints �14� are required to be imposed. In fact, we can modify
this set of constraints to include all the sªn�n−1� /2 constraints,

hij�t� = „�i�t� − � j�t�… = 0 ∀ i 
 j i, j � �1,n� �15�

of which �n−1��n−2� /2 are redundant, though all of them are
consistent �11,16�. Enforcing these constraints would make the
motion of all the gyros identical. As mentioned before, among
these s constraints, only �n−1� are independent. Noting that in
general the initial conditions �Eq. �13�� may not satisfy the con-
straints �Eq. �14�� �or, alternatively, Eq. �15��, we further modify
the constraints �Eq. �15�� to

ḧij + �ḣij + khij = 0 ∀ i 
 j i, j � �1,n� �16�

where � and k are positive constants �15�. Since the solution of the
set of s equations given by Eq. �16� satisfies the condition that
hij→0 as t→	, we have asymptotic �and exponential� conver-
gence toward the satisfaction of the constraints �Eq. �15�� and
hence obtain synchronization of the n different gyros.

It is important to point out that by altering the parameters � and
k in Eq. �16�, one can describe different “paths” taken by the
system of gyros toward their eventual synchronization. For sim-
plicity, we have chosen the same constants � and k for each equa-
tion of the set �16�. In general, we could have used different
values of � and k for the different equations in this set �provided
all the equations in the set are consistent with one another�, sig-
nifying our intent to synchronize some of the gyros earlier �in
time� than others since the values of � and k for each of the
equations in the set �16� control the rate and nature of conver-
gence of hij�t� to zero. Even more generally than is shown in the
Eq. �16�, we could have chosen the paths toward synchronization
to be described by any set of consistent second order nonlinear
differential equations that would be globally asymptotic to the
solution hij =0, i
 j, i , j� �1,n�, so that the paths taken by the
different gyros toward synchronization can be controlled pretty
much at will.

Equations �16� can be put in the form of Eq. �8� where the n
vector q= ��1 ,�2 , . . . ,�n�T, so that

Aq̈ = − �Aq̇ − kAq ª b�q,q̇� �17�

where matrix A is an s�n matrix, containing 0’s, 1’s, and −1’s.
For example, when we have four gyros so n=4 and s=6, the 6
�4 matrix A takes the form
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A = �
1 − 1 0 0

1 0 − 1 0

1 0 0 − 1

0 1 − 1 0

0 1 0 − 1

0 0 1 − 1

� �18�

We note the form of matrix A, which we will use to our advantage
in our subsequent derivations: Each row of A has all its elements
zero, except for two elements, which are 1 and −1. As expected,
only �n−1� rows of matrix A are linearly independent. Comparing
Eq. �5� with Eq. �12b�, we see that the matrix M that describes the
unconstrained motion of the mechanical system consisting of n
gyros is given by M=In. Also, the n components of the n vector f
in Eq. �5� are given by the f i’s, i=1,2 , . . . ,n defined in Eq. �12b�.
From Eq. �10�, the explicit generalized control force n vector, Fc,
required to enforce the constraint set �Eq. �17�� is given by

Fc = A+�b − Af� �19�

where A+ is the MP inverse of matrix A, the s vector b is given in
Eq. �17�, and the f i given in Eq. �12b� form the n components of
the n vector f. For n=4 and matrix A given in Eq. �18�, we easily
determine �this can be done using MATLAB or MAPLE�

A+ =
1

4�
1 1 1 0 0 0

− 1 0 0 1 1 0

0 − 1 0 − 1 0 1

0 0 − 1 0 − 1 − 1
� �20�

which when substituted in relation �19� will yield the explicit
control forces to exactly satisfy the s constraint equations �Eq.
�17�� or, alternatively, �Eq. �16��.

Noting Eq. �9�, we then see that the synchronized motion of the
n gyros is obtained by providing the generalized control force f i

c

to the ith gyro, where f i
c is the ith component of the n vector Fc

obtained explicitly in Eq. �19�. The equations of motion for the
�asymptotically� synchronized gyros will then be

�̈i = f i��i, �̇i,t;Pi� + f i
c i = 1,2, . . . ,n �21�

From Eq. �21�, we observe that, in general, f1
c�t��0. Hence,

though the motion of all the gyros is fully synchronized �asymp-
totically� by subjecting the ith gyro to the control force f i

c, the
synchronized motion will, in general, not be that of the master
gyro, unless f1

c =0. In order to synchronize the motion of the �n
−1� slave gyros with the motion of the first �master, i=1� gyro, we
then need to simply subtract the force f1

c from each component of
the control force n vector Fc determined from Eq. �19�. �The proof
of this statement is somewhat long, and in order not to disturb the
flow of thought, we present it in Appendix B.� The active control
force needed to be applied to synchronize the remaining n−1
gyros with the motion of the first �master� gyro is then given by

Fsyn = Fc − �1�f1
c = �0, f2

c − f1
c, f3

c − f1
c, . . . , fn

c − f1
c�T �22�

where �1� denotes the n�1 column vector each of whose ele-
ments is unity.

We thus obtain the equations of motion of the system of n gyros
as

�̈i = f i��i, �̇i,t;Pi� + f i
syn i = 1,2, . . . ,n �23�

where f i
syn is the ith component of the control force n vector Fsyn

�explicitly given in Eq. �22��, which causes the slave gyros to
exactly follow the motion of the master. Note that the first com-
ponent of the n vector Fsyn is zero since the first gyro �i=1� is the

master gyro, so that from Eq. �23�, we have �̈1= f1��1 , �̇1 , t ; P1�.
The nonidentical slave gyros �i=2,3 , . . . ,n� are subjected to the

last �n−1� components of the generalized control force n vector
Fsyn, which thus enforces exact synchronization of the slave gyros
with the master gyro’s motion.

5 Numerical Examples
In this section, we consider two examples. The first example

deals with the synchronization of three nonidentical gyros, each
with its own physical characteristics. For the parameters chosen to
describe these gyros, each gyro exhibits chaotic dynamics, and the
two slave gyros are required to follow the master’s chaotic mo-
tions. The second example deals with five different gyros, whose
motion is required to be synchronized. One of the four slave gyros
in this set has properties that show regular motion, the others have
properties that show chaotic motions. They are synchronized with
the motion of the master gyro, which in this example is periodic,
though complex.

Example 1. Consider three gyros each described by Eqs. �12a�
and �12b� that need to be synchronized so that they each follow
the motion of the first �master� gyro. Each uncontrolled gyro ex-
hibits a chaotic motion. We shall take these three dynamical sys-
tems to be different from each other, described by the parameter
sets Pi= ��i ,�i ,ci ,ei ,�i ,�i�, i=1,2 ,3, and their dynamics will be

investigated for the initial condition sets ICi= ��i
0 , �̇i

0�, i=1,2 ,3,
given by

P1 = �10,1,0.5,0.03,35.8,2.05� IC1 = ��1
0 = − 0.5, �̇1

0 = 1�
�24�

P2 = �10,1,0.5,0.05,35.5,2� IC2 = ��2
0 = 0.5, �̇2

0 = 1� �25�
and

P3 = �10.5,1,0.5,0.04,38.5,2.1� IC3 = ��3
0 = 1, �̇3

0 = − 0.5�
�26�

The equation of motion �Eq. �12a�� for the ith gyro can be ex-
pressed as a set of three first order autonomous equations given by

�̇i = �i

�̇i = − �i
2 �1 − cos �i�2

sin3 �i
− ci�i − ei�i

3 + �i sin �i − ��i sin �i�sin i

̇i = �i �27�

Each of the gyro systems described by the parameter sets Pi, i
=1,2 ,3, given by Eqs. �24�–�26� is chaotic and has a different
chaotic attractor.

The Lyapunov exponents for each of the dynamical systems are
computed over a time span of 1000 s using the method described
in Ref. �17�. The integration for determining these exponents is
performed using MALTAB ODE45 using a relative error tolerance of
10−9 and an absolute error tolerance of 10−13. The Lyapunov ex-
ponent sets, li, of the three different dynamical systems are com-
puted to be l1	�0.211,−0.896,0�, l2	�0.216,−1.001,0�, and l3
	�0.208,−0.936,0�. The positive value of the largest Lyapunov
exponent in each set indicates that the motions are chaotic for
each of these gyros. Furthermore, the chaotic attractors for each
system are different.

Figure 2 shows plots of ��i , �̇i�, i=1,2 ,3, for 50� t�100 for
the three uncoupled gyros along with a figure �lower right corner�
in which all three plots are superposed. The integration of the
equations of motion throughout this study is carried out using
MATLAB ODE45 with a relative error tolerance of 10−9 and an ab-
solute error tolerance of 10−12. The differences in the responses
between the three gyros, hij�t�=�i�t�−� j�t�, are shown in Fig. 3.

We shall now use the scheme described in Sec. 4 to couple
these gyros and synchronize them, the first gyro being the master.
In this demonstration, the synchronization is done using equation
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set �16� using �=1 and k=2. Since we have three dynamical sys-
tems, the number of constraints for synchronization are given by
s=3. Matrix A becomes

A = �1 − 1 0

1 0 − 1

0 1 − 1
� �28�

so that

A+ =
1

3� 1 1 0

− 1 0 1

0 − 1 − 1
� �29�

We note that only two rows of matrix A given in relation �28� are
independent, signifying that we have two constraints that are in-

dependent. The explicit, generalized control forces f i
syn required to

be applied to the slave gyros �i=2,3� are obtained using relations
�17�–�22�. Figure 4�a� shows the time responses for the first 20 s.
of the three uncoupled gyros, and Fig. 4�b� shows their synchro-
nized response, where the latter two gyros �i=2,3� are now slaved
to the first gyro. We observe that the error between the responses
gradually reduces to zero, as required by Eq. �17�.

The plots in the ��i , �̇i� plane, i=1,2 ,3, superposed on one
another for all three gyros are shown in Fig. 5, indicating synchro-
nization of the two slave gyros with the chaotic motion of the
master gyro. The plots are made using the response of each of the
gyros over a 50 s interval of time starting at 50 s. We note that in
this figure, there are three plots that are superimposed on top of
one another.

Fig. 2 „�i , �̇i… plots showing the dynamics of the three un-
coupled gyros for 50Ï tÏ100. The lower right corner shows
these plots superposed on one another; the first gyro is shown
with a solid line, the second with a dashed line, and the third
with a dashed-dotted line.

Fig. 3 The differences in the responses between the three un-
coupled, unsynchronized gyros shown for a duration of 60 s.
h12„t…=�1„t…−�2„t… is shown by the solid line, h13„t…=�1„t…−�3„t…
is shown by the dashed line, and h23„t…=�2„t…−�3„t… is shown by
the dashed-dotted line.

Fig. 4 „A… First 20 s of the response of the uncoupled gyros
with the master gyro shown with a solid line, the second gyro
shown with a dashed line, and the third gyro shown with a
dashed-dotted line. „B… Synchronization of the gyros showing
the slave gyros following the master „solid line…, as required by
the constraint set „16… with �=1 and k=2.

Fig. 5 Superimposed plots of „�i , �̇i…, i=1,2,3, of the three syn-
chronized gyros for 50Ï tÏ100. The master gyro is a chaotic
system and its Lyapunov exponents †17‡ are l1É ˆ0.211,
−0.896,0‰. Each of the gyros execute the entire motion shown
in the plot.
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The differences in the responses, hij�t�=�i�t�−� j�t�, 50� t
�100, between the motions of the three synchronized gyros are
shown in Fig. 6. We notice that this error soon becomes of the
same order of magnitude as the numerical integration error toler-
ance �10−12�. The exponential convergence of hij�t� toward zero,
as demanded by relation �16�, is obvious. Lastly, we show the
generalized control forces that need to be applied to the slave
gyros �i=2,3� to synchronize their motions with that of the mas-
ter. This is shown in Fig. 7 for the entire time segment 0� t
�100.

Example 2. We consider here five different gyro systems, and
our aim is to track the motion of the first gyro �master, with
parameter set P1�, which in this case is a periodic motion, though
considerably complex in nature �see Fig. 9�. The four slave gyros
exhibit both regular and chaotic motions when uncontrolled. The

parameter sets Pi= ��i ,�i ,ci ,ei ,�i ,�i�, i=1,2 , . . . ,5, and the ini-
tial condition sets for the dynamical systems are taken to be

P1 = �10.5,1,0.5,0.02,38.7,2.2� IC1 = ��1
0 = − 1, �̇1

0 = 0.5�
�30�

P2 = �10,1,0.5,0.05,35.5,2� IC2 = ��2
0 = 0.5, �̇2

0 = 1� �31�

P3 = �10.5,1,0.5,0.04,38.5,2.1� IC3 = ��3
0 = 1, �̇3

0 = − 0.5�
�32�

P4 = �10,1,0.5,0.03,35.8,2.05� IC4 = ��4
0 = − 0.5, �̇4

0 = 1�
�33�

and

P5 = �10.5,1,0.45,0.045,36,2.05� IC5 = ��5
0 = 0.5, �̇5

0 = 0.5�
�34�

The Lyapunov exponent sets, li, for these five different gyros—
three of which have the same properties as those in Example
1—computed over a time interval of 1000 s, are found to be �17�

l1 	 �− 0.180,− 0.50,0� l2 	 �0.216,− 1.001,0�

l3 	 �0.208,− 0.936,0�

l4 	 �0.211,− 0.896,0� l5 	 �− 0.017,− 0.606,0� �35�
The numerical integration error tolerances for computing the

Lyapunov exponents are identical to those used in the previous
example. From the values of set l1, we see that the master gyro
has a periodic motion, while the slave gyros �i=2,3 ,4 ,5� show a
variety of both chaotic and regular motions. From the largest
Lyapunov exponent, we see that three of the slaves exhibit chaotic
motions, while one shows a periodic motion.

Figure 8 shows the ��i , �̇i�, i=2,3 ,4 ,5 plots for the four slave
gyro systems for 50� t�100. Except for the dynamical system

Fig. 6 h12„t…=�1„t…−�2„t… „solid line…, h13„t…=�1„t…−�3„t…
„dashed line…, and h23„t…=�2„t…−�3„t… „dashed-dotted line… for
50Ï tÏ100. Note the exponential convergence of the hij’s, as
demanded by Eq. „16…, and also the vertical scale, which indi-
cates that the error in synchronization is of the order of the
numerical integration error tolerance, 10−12.

Fig. 7 The solid line shows the generalized force f2
syn required

to be applied to second gyro „i=2… to achieve synchronization
with the motion of the master gyro „i=1…. The dashed line
shows the generalized force f3

syn required to be applied to the
third gyro „i=3….

Fig. 8 „�i , �̇i…, i=2,3,4,5 plot for 50Ï tÏ100 of the four un-
coupled slave gyro systems showing different dynamical be-
haviors for each gyro. The lower right figure shows the tran-
sient motions of this „i=5… dynamical system, which has not
yet attained its regular periodic behavior. The other three dy-
namical systems „i=2,3,4… exhibit chaotic motions, as indi-
cated by the computed Lyapunov exponents.
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�i=5� shown in the lower right, the other three slaves exhibit a
chaotic behavior, as indicated from the computed Lyapunov num-
bers shown in Eq. �35�.

The synchronized motion—we again choose �=1 and k=2—of
the five systems with the four slaves following the master is
shown in Fig. 9�a�. We see that the tracking during the transient
period when the orbit of the master gyro is being attracted to its
stable periodic orbit is very well executed by the control. Here,
the uncontrolled motion of the first �master� gyro is first plotted,
and superimposed on it are plots of the motions of the four slaves
for 50� t�100. The results of the synchronization procedure
when the integration is extended to 200 s are shown in Fig. 9�b�,
where we have plotted the motions of the five different systems
for 150� t�200. The plots fall exactly on top of each other,
indicating synchronization. We notice that the master gyro’s mo-

tion has now settled down to being periodic, and the four slaves
follow this periodic, though complex, motion. Note that the figure
shows the motion of all five gyros superposed on one another.

The manner in which the synchronization occurs over time is
illustrated in Fig. 10, where we show the first 20 s. of the motion
of both the uncoupled system and the synchronized system. The
solid line in the two panels denotes the master gyro; the dashed
line, the second gyro; the dashed-dotted line the third gyro; the
dotted line, the fourth gyro; and another solid line, the fifth. From
the lower panel, which shows synchronization with the master
gyro, we can identify the motion of the master in the upper panel.

Figure 11 shows the control forces needed to be applied to the
four slave gyros for synchronization for 0� t�100. The errors in
synchronization, hij�t�=�i�t�−� j�t�, for the time intervals 50� tFig. 9 „A… „�i , �̇i…, i=1,2,3,4,5, plot for 50Ï tÏ100 of the five

gyro systems superimposed on each other showing that the
four slaves follow the master gyro. As is seen, the motion of
the master is a complex transient motion, which has not yet
reached its stable periodic orbit, which is characterized by the
Lyapunov exponents l1É ˆ−0.180,−0.50,0‰. „B… „�i , �̇i…, i
=1,2,3,4,5, plot for 150Ï tÏ200 of the five gyro systems su-
perimposed on each other showing that the four slaves follow
the master gyro. The master gyro has reached a periodic orbit,
and the four slaves synchronize with the master’s motion. The
motion of the five gyros is shown superposed on each other.

Fig. 10 The upper figure shows the motion of the five un-
coupled gyros over the first 20 s. of response. The lower figure
shows the manner in which the synchronization occurs over
time, the five gyros following the motions of the master gyro,
which in turn is asymptotically attracted to a stable periodic
orbit, as shown in Fig. 9„b….

Fig. 11 Control forces required to be applied to the four slave
gyros. The solid line shows the generalized control force on the
second gyro, the dashed line that on the third gyro, the dashed-
dotted line that on the fourth gyro, and the dotted line that on
the fifth gyro.
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�100 and 150� t�200 are shown in Fig. 12, which shows the
same sort of characteristics, including exponential convergence,
that were observed earlier in Fig. 6.

6 Conclusions
In this paper, we have described an analytical dynamics based

approach to the synchronization of highly nonlinear mechanical
systems that yields the explicit generalized active control forces
so that a set of slave systems can follow an independent master
mechanical system. This paper focuses on gyroscopic
systems—by way of demonstration—due to their importance in
the guidance and control of airships and spacecraft and in the
accurate control of complex mechanical systems, such as robotic
and autonomous systems. While for simplicity, the slave systems
have been considered to be independent of each other in this pa-
per, the same methodology is applicable to slave systems that may
be linearly or nonlinearly coupled to one another. The main con-
tributions of this paper are the following.

1 The novel strategy used here is to formulate the problem of
synchronization of highly nonlinear mechanical systems first

as a tracking control problem, and then further recast this
tracking control problem as a problem of constrained motion
of nonlinear dynamical systems. We accordingly constrain
the motion of the slave systems to exactly follow the master
system and thereby obtain the exact control forces required
to be applied to the slaves for synchronization with the mas-
ter. The constraint �control� forces that need to be applied for
exact synchronization are determined explicitly and in closed
form using the newly developed general theory of con-
strained motion of nonlinear mechanical systems. The theory
�11,15� that underlies the approach is much broader than
what is required for the specific problem at hand of synchro-
nizing chaotic/regular gyroscopic systems since it is appli-
cable to general nonlinear mechanical systems. This makes
the approach presented here applicable to the synchroniza-
tion of general nonlinear systems.

2 In Sec. 4 and Appendix B, we prove a general result that
hereto appears to be not known, and we use it to develop a
simple, yet powerful, methodology for the synchronization of
complex nonlinear mechanical systems.

3 The method yields control forces for the synchronization of
nonlinear mechanical systems that have the following salient
and beneficial characteristics. The control forces �1� are con-
tinuous in time, �2� are obtained explicitly in closed form so
that they are simple and efficacious to determine, �3� lead,
theoretically speaking, to exact synchronization of the non-
linear mechanical systems, �4� provide, in a sense, the mini-
mum forces that need to be exerted for such synchronization
�18�, and �5� are not found by methods using any approxi-
mations of the nonlinear system.

4 Whereas most such synchronization studies are done with
dynamical systems that are identical, we show that the
method developed here can be used with equal ease and fa-
cility to couple different slave systems—each displaying
varying kinds of regular and chaotic motions. This is impor-
tant because, unlike many electrical systems, multiple copies
of mechanical systems can seldom be built to have identical
dynamical characteristics.

5 We show the efficacy of the methodology by illustrating two
examples. In the first example, two slave gyros with different
dynamical characteristics are synchronized with the motions
of yet another master gyro whose dynamical characteristics
differ from those of both the slaves; the master’s motion is
chaotic. In the second example, we consider five different
gyro systems, some of which have chaotic motions, and we
synchronize them with the stable periodic motions of the
master gyro. While the dynamics of the slave gyros have
been taken for simplicity to be independent of one another in
this paper, the same general methodology works with
coupled slave gyros as well.

6 We observe that while most methods �e.g., Ref. �10�� of syn-
chronization deal with applying control signals to each of the
first order differential equations that describe a mechanical
system’s dynamics �each gyro here can be represented by
three, first order autonomous, nonlinear equations�, the
method proposed here deals directly, and simply, with the
second order nonautonomous Lagrange equations of motion
and obtains in explicit form the generalized control forces
required to synchronize the different mechanical systems.
The control we obtain is continuous in time, unlike what
might be obtained using methods such as sliding mode con-
trol �20�; yet, theoretically speaking, it leads to exact syn-
chronization.

7 Lastly, the approach allows the paths in phase space along
which the synchronization occurs to be easily and accurately
controlled, so that different slaves can be brought into syn-
chronization with the master with varying levels of rapidity,
as desired.

Fig. 12 „A… The errors hij„t… as functions of time for 50Ï t
Ï100, showing that they exponentially reduce. „B… The errors
hij„t… as functions of time for 150Ï tÏ200. Note the vertical
scales. Errors in synchronization of the motion are less than
the integration error tolerance used.
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Appendix A
The Lagrangian in Eq. �1� can be obtained as follows:

1 The kinetic energy �KE� of the symmetrical gyro �Fig. 1�
with respect to the inertial frame of reference OXYZ
= �1 /2�mūc.m. · ūc.m.+KE of rotation about the c.m. of the
gyro. Here, ūc.m. is the velocity of the c.m. of the gyro with
respect to the inertial frame OXYZ. Denoting by x̄c.m. the
position vector of the c.m. of the gyro, we have

x̄c.m. = �r sin � sin ��Ī − �r sin � cos ��J̄ + �r cos � + d�K̄
�A1�

where Ī, J̄, and K̄ are the unit vectors along the inertial
coordinate directions OX, OY, and OZ, respectively. Differ-
entiating Eq. �A1� with respect to time and noting that the
vertical support excitation d�t�=d0 sin �t, we obtain the ve-
locity of the c.m. of the gyro to be

ūc.m. = �r�̇ sin � cos � + r�̇ cos � sin ��Ī + �r�̇ sin � sin �

− r�̇ cos � cos ��J̄ + �ḋ − r�̇ sin ��K̄ �A2�

Hence, ūc.m. · ūc.m. = r2��̇2 + �̇2 sin2 �� + ḋ2 − 2rḋ�̇ sin �

�A3�
The total KE of the gyro �14� is then given by

KE =
1

2
m�r2��̇2 + �̇2 sin2 �� + ḋ2 − 2rḋ�̇ sin ��

+
1

2
I1��̇2 + �̇2 sin2 �� +

1

2
I3��̇ + �̇ cos ��2 �A4�

Here, I1 and I3 refer to the moments of inertia about the
equatorial and polar directions through the c.m. of the sym-
metric gyro. This expression simplifies to

KE =
1

2
I��̇2 + �̇2 sin2 �� +

1

2
I3��̇ + �̇ cos ��2 − mrḋ�̇ sin �

+
1

2
mḋ2 �A5�

where I= �mr2+ I1� is the moment of inertia of the gyro about
an axis through the point of support o, which is parallel to the
principal axis direction that goes through the c.m.

2 The potential energy �PE� of the gyro with respect to the
inertial frame OXYZ is

PE = mgd + mgr cos � �A6�
3 Therefore, the effective Lagrangian—we ignore terms that

are purely functions of time—L=KE−PE, is then

L =
1

2
I��̇2 + �̇2 sin2 �� +

1

2
I3��̇ + �̇ cos ��2 − mrḋ�̇ sin �

− mgr cos � �A7�

Appendix B
We obtain here the explicit control force n vector Fsyn, as given

in Eq. �22�, which is required to be applied to the set of n nonlin-
ear mechanical systems so that the slave systems, i=2,3 , . . . ,n,
follow the master system, i=1.

We begin with two lemmas.
LEMMA 1. Consider the s�n matrix A of Eq. (17), an instan-

tiation of which is provided for n=4 in Eq. (18). Augment matrix
A by the n-component row vector

g = �1,0,0, . . . ,0� �B1�

to form the �s+1��n matrix

Ã = 
A

g
� �B2�

Then, the row vector

h ª g�In − A+A� �B3�

is simply the n-component row vector �1 /n��1,1 , . . . ,1�. Here, X+

denotes the MP inverse of the matrix X.
Proof. We notice that only �n−1� rows of matrix A are linearly

independent. Hence, A is rank deficient. As shown in Ref. �13�,
the column space of the n�n matrix �In−A+A� is the same as the
null space of matrix A. However, the null space of matrix A has
dimension 1 and consists of n-component column vectors, each of
the form ��1,1 ,1 , . . . ,1�T, where we disallow the value �=0
since it leads to a trivial vector. Thus, the n columns of the n
�n matrix �In−A+A� must be of the form �i�1,1 ,1 , . . . ,1�T, i
=1,2 , . . . ,n, where the constants �i�0, i=1,2 ,3 , . . . ,n, remain
yet to be determined.

However, the matrix �In−A+A� is symmetric since �In

−A+A�T=In− �A+A�T=In− �A+A� �see Ref. �13��. Hence, �1=�2
= ¯ =�n=�. Furthermore, �In−A+A� is idempotent; hence, n�2

=�, which implies that �=1 /n. The matrix �In−A+A� therefore
has identical columns, and every entry in the matrix is 1 /n. Not-
ing Eq. �B1�, the result now follows.

From this proof, it follows that the result of this lemma is true
even when our matrix A has any row dimension r, �n−1��r
�s=n�n−1� /2, provided it always has �n−1� linearly indepen-
dent rows. �

LEMMA 2. The MP generalized inverse of matrix Ã defined in
Eq. (B2) is given by

Ã+ = �VA+ ��1�� �B4�

where �1� is the n-component column vector each of whose com-
ponents is unity, and the n�n matrix

V = �
0 0 . . . . . . . . . 0

− 1

− 1

] In−1

]

− 1

� �B5�

where In−1 is the �n−1�� �n−1� identity matrix.

Proof. Greville �19� gives the MP inverse of a matrix Ã, which
is obtained by augmenting any matrix A with the row g, as

Ã+ = 
A

g
�+

= ��In − h+g�A+ �h+� for h = g�In − A+A� � 0

�B6�

For our specific matrix A and row vector g, the row vector h is
given by Eq. �B3�. The MP inverse of h, namely, h+

= �1,1 , . . . ,1�T
ª �1� �see Ref. �13��. Noting that g

= �1,0 ,0 , . . . ,0�, we have �In−h+g�=V, and the result follows
equation �B6�. �

Main Result
The control force that synchronizes the �n−1� slave gyro sys-

tems to the motion of the first �master, i=1� gyro is given by the
n vector

Fsyn = Fc − �1�f1
c = �0, f2

c − f1
c, f3

c − f1
c, . . . , fn

c − f1
c�T �B7�

where the f i
c’s are defined as in Eqs. �19� and �21�.

Proof. We add to the s constraints given by Eq. �17� the addi-
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tional constraint q̈1ª �̈1= f1��1 , �̇1 , t�= f1�q1 , q̇1 , t�, so that our set
of constraints now becomes

Ãq̈ = 
A

g
�q̈ = 
 b�q,q̇�

f1�q1, q̇1,t�
�ª b̃�q,q̇,t� �B8�

instead, where the column vector b is the same as that in Eq. �17�,
g is the row vector defined in Eq. �B1�, and Ã is now an �s+1�
�n matrix. The last constraint simply enforces the condition that
the motion of the master gyro is not to be disturbed through the
addition of any control force applied to it.

The control force that causes these constraints �Eq. �B8�� to be
satisfied is then simply given, like before, by �13�

Fsyn = Ã+�b̃ − Ãf� �B9�

where f= �f1 , f2 , . . . , fn�T. Using Lemma 2 and Eq. �B8�, this can
be rewritten as

Fsyn = Ã+
 b�q,q̇�
f1�q1, q̇1,t�

� − 
A

g
�f�

= Ã+
b − Af

0
� = �VA+ ��1��
b − Af

0
� �B10�

where matrix V is defined in Eq. �B5�.
Since Fc

ª �f1
c , f2

c , f3
c , . . . , fn

c�T=A+�b−Af�, as given in Eq. �19�,
relation �B10� becomes

Fsyn = �VA+ ��1��
b − Af

0
� = VFc �B11�

Noting the form of V in Lemma 2, equation �B11� thus reduces to

Fsyn = VFc = �0, f2
c − f1

c, f3
c − f1

c, . . . , fn
c − f1

c�T �B12�
which is the required result. As expected, there is no control force
required to be applied to the master gyro because this is the mo-
tion that we are requiring the slave gyros to follow.

It is important to note that from all the control forces F̂syn�t�
that can be applied to the system to cause synchronization, the
control force Fsyn�t�, which is given explicitly in equation �B12�,
minimizes at each instant of time the quantity �F̂syn�t��TF̂syn�t�
�see Ref. �18��. That is, of all the control forces that will cause
synchronization, Fsyn�t� has, at each instant of time, the smallest
Euclidean norm. �

COROLLARY. The result above is valid when we use any r ap-
propriate and consistent equations, �n−1��r�s=n�n−1� /2 for
synchronization, of the form

�i�t� = � j�t� i 
 j i, j � �1,n� �B13�

to synchronize the �n−1� nonlinear mechanical systems with the
master system �i=1�, as long as �n−1� of these equations are
linearly independent.

Proof. If the conditions of the corollary are satisfied, the rank of
the r�n matrix A is �n−1�, and the null space of A will have
dimension 1. Noting the form of A, the columns of the n�n
matrix �In−A+A� will then each be of the form ��1,1 , . . . ,1�T.
According to Lemma 1 then,

h ª g�In − A+A� = �1/n��1,1, . . . ,1� �B14�

so that, again,

h+ = �1,1, . . . ,1�T
ª �1� �B15�

and the entire argument goes through. �
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Stability of SDOF Linear
Viscoelastic System Under the
Excitation of Wideband Noise
The moment Lyapunov exponents of a single degree-of-freedom viscoelastic system under
the excitation of a wideband noise are studied in this paper. A realistic example of such
a system is the transverse vibration of a viscoelastic column under the excitation of
stochastic axial compressive load. The method of averaging, both first order and second
order, is applied. The averaged Itô differential equation governing the pth norm is estab-
lished and the pth moment Lyapunov exponent is then obtained. White noise and real
noise are considered as models of wideband noises. The variations of the moment
Lyapunov exponents with the change of different parameters are discussed.
�DOI: 10.1115/1.2775496�

1 Introduction

1.1 Wideband Noises and Stochastic Stability. Typical ex-
amples of engineering systems subjected to parametric and exter-
nal random excitations include buildings under earthquake and
wind loads, off-shore platforms subjected to ocean waves, ve-
hicles running on rough roads, airplanes in turbulent streams, etc.
The common property of the loads is their uncertainty, or the
stochastic effect. In order to perform analytical analysis to these
systems, mathematical models are required under the framework
of stochastic dynamics and stability.

Mathematically, random excitations can be described as sto-
chastic processes. With the theory of stochastic processes, analyti-
cal models of different noises can be established. Gaussian white
noise process ��t� is formally the derivative of the Wiener process
given by

��t� = �Ẇ�t� �1.1�

with constant power spectral density S���=�2. Such a noise does
not exist in reality since its power will be infinity. However, it
provides a very simple and useful mathematical idealization for
theoretical analysis. A real noise, or Ornstein–Uhlenbeck process,
is defined by

d��t� = − ���t�dt + �dW�t� �1.2�

with power spectral density

S��� =
�2

�2 + �2 �1.3�

For large values of �, its power will spread over a wide frequency
band; thus, by suitably selecting the parameter �, a real noise may
be used as the mathematical model of a wideband noise.

The moment Lyapunov exponents, which are defined by

��p� = lim
t→�

1

t
log E��X�t��p� �1.4�

characterize the moment stability of a stochastic dynamical sys-
tem with state vector X�t�, where E�·� denotes the expected value
and �·� denotes a suitable vector norm. The pth moment of the
response of the system is asymptotically stable if ��p��0. More-

over, ��p� is a convex function of p and ���0� is equal to the
largest Lyapunov exponent �, which is defined by

� = lim
t→�

1

t
log�X�t�� �1.5�

and describes the almost-sure or sample stability of the system.
Generally speaking, Lyapunov exponent is easier to obtain.

However, in general, the almost-sure stability cannot assure the
moment stability. Therefore, it is important to obtain the moment
Lyapunov exponents of stochastic systems so that the complete
properties of dynamic stability can be described.

1.2 Single Degree-of-Freedom Linear Viscoelastic System
Under Dynamical Load. Viscoelasticity has been observed in a
number of materials such as polymers, composite materials, met-
als, and alloys at high temperatures. Generally speaking, elastic
materials have the capacity to store mechanical energy without
dissipation because they are capable of recovering to the original
states after they are unloaded. However, viscoelastic materials
both store and dissipate mechanical energy. This property is useful
in engineering applications, such as for suppressing the vibration
of structures. It is of practical importance to investigate the be-
havior of viscoelastic materials under random dynamic loads.

In classical elasticity, there are no strain-rate effects, i.e., the
strain at time t depends only on the stress at time t and vice versa.
However, for viscoelastic materials, stress is not a function of
instantaneous strain but depends on the past time history of strain;
this dependency relationship also holds for strain. It had been
observed that the strain of a viscoelastic material under constant
stress typically increases with time in creep test, while the stress
decreases with time under constant strain in relaxation test. For
linear nonaging materials, the relation between uniaxial strain 	�t�
and stress ��t� can be expressed as �1�

	�t� =�
0

t

F�t − 
�d��
� = F�0���t� +�
0

t

Ḟ�t − 
���
�d


�1.6�

��t� =�
0

t

G�t − 
�d	�
� = G�0�	�t� +�
0

t

Ġ�t − 
�	�
�d


where F�t� is the creep function and G�t� is the relaxation func-
tion. Obviously, G�0� corresponds to the instantaneous elastic
modulus. It is assumed that the following conditions:
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�
0

�

�Ġ�t��dt � � and �
0

�

t�Ġ�t��dt � � �1.7�

are satisfied such that the equilibrium elastic modulus G��� exists.
One usual choice of relaxation and creep functions under uniaxial
strain status is

G�t� = Ee−t/� F�t� =
1

E
�1 +

t

�
	 �1.8�

where E is the general elastic modulus and � is known as the
relaxation time. Equation �1.8� describes the stress relaxation and
creep phenomena and is associated with the well-known differen-
tial Maxwell model �1�. Furthermore, the generalized Maxwell
model, which consists of a sequence of differential Maxwell units
coupled in parallel, can be used as an approximation to most
linear viscoelastic behavior as close as possible �1,2�. Obviously,
the relaxation function for the generalized Maxwell model will be
given by

G�t� = 

j=1

M

Eje
−t/� j �1.9�

where M is the number of Maxwell units in parallel chain.
It is known that the equation of motion of an elastic beam under

dynamical axial compressive load P�t� is given by

�A
�2v
�t2 + �0

�v
�t

+ EI
�4v
�x4 + P�t�

�2v
�x2 = 0

where v�x , t� is the transverse deflection of the beam, x the axial
coordinate, �A the mass per unit length of the beam, �0 the damp-
ing constant, and EI the flexural rigidity of the beam. Since the
term including EI is associated with the constitutive relation, the
equation of motion for the viscoelastic case becomes, using Eq.
�1.6�,

�A
�2v
�t2 + �0

�v
�t

+ EI�1 − H�
�4v
�x4 + P�t�

�2v
�x2 = 0 �1.10�

where the material relaxation operator H is taken as

H�u�t�� =�
0

t

h�t − s�u�s�ds �1.11�

in which h�t� is the relaxation function describing the property of
viscoelasticity.

If the beam is simply supported, the transverse deflection can
be expressed as

v�x,t� = 

n=1

�

qn�t�sin
nx

L
�1.12�

Substituting Eq. �1.12� into Eq. �1.10� leads to the equations of
motion,

q̈n�t� + 2�q̇n�t� + �n
2�1 −

P�t�
Pn

− H�qn�t� = 0 n = 1,2, . . .

�1.13�

where

� =
�0

2�A
�n

2 =
EI

�A
�n

L
	4

Pn = EI�n

L
	2

If only the nth mode is considered and the damping, viscoelas-
tic effect, and the amplitude of load are all small, by introducing a
small parameter 	, the equation of motion can be written as

q̈�t� + 2	�q̇�t� + �2�1 + 	1/2��t��q�t� − 	�
0

t

h�t − s�q�s�ds� = 0

�1.14�
The dynamic stability of viscoelastic systems has been investi-

gated by some authors. Ariaratnam �3� studied the almost-sure
stability of a single degree-of-freedom �SDOF� linear viscoelastic
system subjected to random fluctuation in the stiffness parameter
by evaluating the largest Lyapunov exponent using the method of
stochastic averaging for integrodifferential equations due to Lari-
onov �4�. Potapov �5� studied the almost-sure stability of a vis-
coelastic column under the excitation of a random wideband sta-
tionary process using Lyapunov’s direct method. Potapov �6�
described the behavior of stochastic viscoelastic systems by nu-
merical evaluation of Lyapunov exponents of linear integrodiffer-
ential equations.

As what has been indicated before, because almost-sure stabil-
ity cannot assure moment stability, it is important to study the
moment stability of SDOF linear viscoelastic system �1.14� in
terms of moment Lyapunov exponents.

For small 	 such that �2−	2�2�0, letting

q�t� = x�t�e−	�t �1.15�
the damping term in Eq. �1.14� can be removed to yield

ẍ�t� + �̃2�1 + 	1/2�̃�t��x�t� − 	�
0

t

h̃�t − s�x�s�ds� = 0

�1.16�
where

�̃2 = �2 − 	2�2 �̃�t� =
�2

�2 − 	2�2��t� h̃�t� =
�2

�2 − 	2�2e−	�th�t�

It is easy to verify that the moment Lyapunov exponents of sys-
tems �1.14� and �1.16� are related as

�q�t��p� = − 	p� + �x�t��p� �1.17�

Therefore, without loss of generality, the stochastic stability of the
SDOF viscoelastic system

q̈�t� + �2�1 + 	1/2��t��q�t� − 	�
0

t

h�t − s�q�s�ds� = 0

�1.18�
will be considered in the remaining of this paper by determining
its pth moment Lyapunov exponent, where ��t� is a wideband
stationary noise with zero mean.

Generally speaking, it is difficult to obtain the exact moment
Lyapunov exponents of Eq. �1.18�. Therefore, some approximate
methods have to be applied to study the properties of Eq. �1.18�.
In this paper, the method of averaging, both first order and second
order, will be used to obtain the differential equations governing
the pth moment. The moment stability of viscoelastic system
�1.18� can then be determined by solving the averaged equations.

2 First-Order Stochastic Averaging
The method of averaging for stochastic dynamical systems was

proposed by Stratonovich �7,8�, and developed by Khasminskii
�9,10�. The purpose is to approximate the solution of a stochastic
dynamical system by a Markov diffusion process which satisfies
the Itô stochastic differential equation when the correlation func-
tion of random excitation decays to zero fast enough or the exci-
tation is a wideband process. After this approximation, it may be
easier to obtain the solution or its dynamical properties of the
approximated or averaged system.

In order to use the method of stochastic averaging to investigate
system �1.18�, the following transformation is applied:
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q�t� = a�t�cos ��t� q̇�t� = − �a�t�sin ��t� ��t� = �t + ��t�
�2.1�

From the first two equations of Eq. �2.1�, one has

ȧ�t�cos ��t� − a�t��̇�t�sin ��t� = 0 �2.2�

Substituting Eq. �2.1�, into system �1.18� yields

ȧ�t�sin ��t� + a�t��̇�t�cos ��t�

= − 	1/2���t�a�t�cos ��t� − 	��
0

t

h�t − s�a�s�cos ��s�ds

�2.3�

Letting P=ap, it is easy to see that P is the pth norm of system
�1.18�. Thus, from Eqs. �2.2� and �2.3�, P�t� and ��t� can be
solved as

Ṗ�t�
�̇�t�

� = 	F�1��P,�,t� + 	1/2F�0��P,�,�,t� �2.4�

where

F�1��P,�,t� = − �pIhP�t�sin ��t�
− �Ih cos ��t� � = F1

�1��P,�,t�
F2

�1��P,�,t� �
F�0��P,�,�,t� =  �1/2��pP�t���t�sin 2��t�

�1/2����t��1 + cos 2��t�� � = F1
�0��P,�,�,t�

F2
�0��P,�,�,t� �

Ih =�
0

t

h�t − s��P�s�
P�t� �1/p

cos ��s�ds

Then, system �2.4� can be approximated by the following aver-
aged equations:

dP̄�t�
�̄�t�

� = 	m̄P

m̄�
�dt + 	1/2�̄dW�t� �2.5�

where

m̄P = M
t
F1

�1��P,�,t� +�
−�

0

E� �F1
�0�

�P
F1


�0� +
�F1

�0�

��
F2


�0��d
�
m̄� = M

t
F2

�1��P,�,t� +�
−�

0

E� �F2
�0�

�P
F1


�0� +
�F2

�0�

��
F2


�0��d
�
��̄�̄T�ij = M

t
�

−�

�

E�Fi
�0�Fj


�0��d
� i, j = 1,2

M
t

�·� = lim
T→�

1

T�
0

T

�·�dt

Fj

�0� = Fj

�0��P,�,��t + 
�,t + 
� j = 1,2

Noting that Eq. �2.4� is an integrodifferential equation, the av-
eraging method for integrodifferential equations �4� should also be
applied. That is to say, in order to simplify the system, the method
of stochastic averaging due to Khasminskii �9,10� is used to ob-
tain the approximate Itô stochastic differential equations, and the
averaging method for integrodifferential equations due to Lari-
onov �4� is used to obtain the approximate drift terms in the Itô
equations in which the viscoelastic terms are involved.

When applying the averaging operation, P�t� and ��t� are

treated as unchanged, i.e., they are replaced by P̄ and �̄ directly.
Now, consider m̄P first. By substituting in the corresponding
terms, one has

m̄P = − �pP̄M
t

�Isc� +
1

4
�2pP̄M

t
�J1�

where

Isc = sin ��t��
0

t

h�t − s�cos ��s�ds

J1 =�
−�

0

R�
��p sin 2��t�sin 2��t + 
�

+ 2 cos 2��t��1 + cos 2��t + 
���d


and R�
�=E���t���t+
�� is the correlation function of the wide-
band noise ��t�.

Observing that conditions �1.7� are required, i.e., h�t� and t ·h�t�
are integrable over �0,��, then applying the transformation s= t
−
 and changing the order of integration lead to

M
t

�Isc� = lim
T→�

1

T�
t=0

T �
s=0

t

h�t − s�cos ��s�sin ��t�dsdt

= lim
T→�

1

T�
t=0

T �

=0

t

h�
�sin ��t�cos ��t − 
�d
dt

= lim
T→�

1

2T�

=0

T �
t=


T

h�
��sin�2�t − �
 + 2�̄� + sin �
�dtd


=
1

2�
0

�

h�
�sin �
d
 =
1

2
H s��� �2.6�

Similarly, it can be shown that

M
t

�Icc� = M
t
�cos ��t��

0

t

h�t − s�cos ��s�ds� =
1

2
H c���

where

H s��� =�
0

�

h�
�sin �
d
 and H c��� =�
0

�

h�
�cos �
d


�2.7�

are the sine and cosine transformations of the viscoelastic kernel
function h�t�.

On the other hand,

M
t

�J1� = lim
T→�

p + 2

2T �
t=0

T �

=−�

0

R�
�cos 2�
d
dt

+ lim
T→�

1

T�
t=0

T �

=−�

0

R�
��2 − p

2
cos�4�t + 2�
 + 4�̄�

+ 2 cos�2�t + 2�̄��d
dt

=
p + 2

2 �

=−�

0

R�
�cos 2�
d
 =
p + 2

4
S�2��

where the cosine and sine power spectral density functions of
noise ��t� are given by

S��� =�
−�

�

R�
�cos �
d
 = 2�
0

�

R�
�cos �
d


= 2�
−�

0

R�
�cos �
d
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���� = 2�
0

�

R�
�sin �
d
 = − 2�
−�

0

R�
�sin �
d
 �2.8�

Similarly, m̄� and ��̄�̄T�ij can be evaluated to yield

m̄P = �pP̄�−
1

2
H s��� +

p + 2

16
�S�2���

m̄� = − ��1

2
H c��� +

1

8
���2���

�2.9�

��̄�̄T�11 = b11 =
1

8
�2p2P̄2S�2�� ��̄�̄T�12 = ��̄�̄T�21 = 0

��̄�̄T�22 = b22 =
1

8
�2�2S�0� + S�2���

Noting that the transition probability density function for the
solution of the averaged equation is the solution of the Fokker-
Planck equation, which depends on the diffusion matrix �̄�̄T but
not every single element �̄ij, thus one can take

�̄12 = �̄21 = 0 �̄11 = �b11 = �pP̄�S�2��
8

�2.10�

�̄22 = �b22 = ��2S�0� + S�2��
8

Finally, the averaged Itô differential equations are

dP̄ = 	�pP̄�−
1

2
H s��� +

p + 2

16
�S�2���dt

+ 	1/2�pP̄�S�2��
8

dW1�t� �2.11�

d�̄ = − 	��1

2
H c��� +

1

8
���2���dt

+ 	1/2��2S�0� + S�2��
8

dW2�t� �2.12�

It can be seen that P̄�t� does not depend on �̄�t�; therefore, it
can be solved independently. The property of independent incre-
ment for the Wiener process indicates that the expectation of the
second term in Eq. �2.11� is zero. Therefore, taking the expected
value on both sides of Eq. �2.11� yields

dE�P̄� = 	�p�−
1

2
Hs��� +

p + 2

16
�S�2���E�P̄�dt �2.13�

From Eq. �2.13�, it is easy to obtain the moment Lyapunov expo-
nents for the averaged system by

��p� = lim
t→�

log E�P̄�
t

= 	�p�−
1

2
H s��� +

p + 2

16
�S�2���

�2.14�

and the Lyapunov exponent is given by

� = ���0� = 	��−
1

2
H s��� +

1

8
�S�2��� �2.15�

From Eqs. �2.14� and �2.15�, it is clear that the viscoelasticity
helps to stabilize the system, whereas noises destabilize the sys-
tem. The stronger the noise, the more unstable the system. The
boundaries for the almost-sure stability and the pth moment sta-
bility are determined by �=0 and ��p�=0, respectively.

Equations �2.14� and �2.15� show that the stability of averaged
system �2.5� is determined by the power spectral density of the
wideband random excitation at 2�. Using Eqs. �1.1� and �1.3�, the
pth moment Lyapunov exponent for the Gaussian white noise
model is reduced by

��p� = 	�p�−
1

2
H s��� +

p + 2

16
��2� �2.16�

and that for real noise model becomes

��p� = 	�p�−
1

2
H s��� +

p + 2

16

��2

�2 + 4�2� �2.17�

A general choice of the viscoelastic kernel function is, accord-
ing to Eq. �1.9� of the generalized Maxwell model,

h�t� = 

j=1

M

� je
−�jt �2.18�

Its sine and cosine transformations are given by

H s��� = 

j=1

M
�� j

� j
2 + �2 H c��� = 


j=1

M
� j� j

� j
2 + �2 �2.19�

Thus, from Eqs. �2.14� and �2.15�, when

S�2�� � 

j=1

M
4� j

� j
2 + �2

system �2.5� is asymptotically stable almost surely. When

S�2�� � 

j=1

M
8� j

�p + 2��� j
2 + �2�

the pth moment of system �2.5� is asymptotically stable. These
results indicate that the stronger the viscoelastic effect �i.e., larger
��, the wider the stability region; the larger the relaxation time
�i.e., smaller ��, the wider the stability region.

3 Second-Order Stochastic Averaging
The first-order stochastic averaging may not be adequate in

some applications. Similar to deterministic systems, higher-order
averaging may be applied to obtain better approximations. Hijawi
et al. �11� studied the dynamic response of nonlinear elastic struc-
ture under random load using both the first-order and the second-
order stochastic averaging methods. Lin and Cai �12� also pre-
sented several examples where some terms in equations may not
be small enough. In this section, a second-order averaging method
is applied and the results are compared with those obtained using
the first-order averaging.

Rewrite Eq. �2.4� as

Ṗ�t�
�̇�t�

� = 	 f1

f2
� + 	1/2g1

g2
� �3.1�

where

f1 = − �pP�
0

t

h�t − s��P�s�
P�t� �1/p

sin��t + ��cos��s + ��ds

f2 = − ��
0

t

h�t − s��P�s�
P�t� �1/p

cos��t + ��cos��s + ��ds

g1 =
1

2
�pP��t�sin�2�t + 2��
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g2 =
1

2
���t��1 + cos�2�t + 2���

Let

P�t� = P̄�t� + 	P1�P̄,�̄,t� ��t� = �̄�t� + 	�1�P̄,�̄,t� �3.2�

where P̄�t� and �̄�t�, as will be shown, are the results of the
first-order averaging and will be determined later. Differentiating
Eqs. �3.2� with respect to time t yields

Ṗ

�̇
� = A�P̄

˙

�̇̄
� + 	�P1/�t

��1/�t
� �3.3�

where

A = �1 + 	��P1/�P̄� 	��P1/��̄�

	���1/�P̄� 1 + 	���1/��̄�
�

It is easy to check that

A−1 = �1 − 	��P1/�P̄� − 	��P1/��̄�

− 	���1/�P̄� 1 − 	���1/��̄�
� + o�	�

Substituting Eq. �3.3� into Eqs. �3.1� yields

�P̄
˙

�̇̄
� = 	A−1 f1 − �P1/�t

f2 − ��1/�t
� + 	1/2A−1g1

g2
� = 	 f1 − �P1/�t

f2 − ��1/�t
�

+ 	2− ��P1/�P̄��f1 − �P1/�t� − ��P1/��̄��f2 − ��1/�t�

− ���1/�P̄��f1 − �P1/�t� − ���1/��̄��f2 − ��1/�t�
�

+ 	1/2g1

g2
� + 	3/2− ��P1/�P̄�g1 − ��P1/��̄�g2

− ���1/�P̄�g1 − ���1/��̄�g2

� + o�	2�

�3.4�

Expanding f1, f2, g1, and g2 at P̄ and �̄ leads to

f1 = − �p�P̄Isc + 	P1Isc + 	P̄�1�Icc − Iss�� − 	�P̄Jsc + o�	�

f2 = − ��Icc − 	�1�Ics + Isc�� − 	
�

p
Jcc + o�	�

g1 =
1

2
�pP̄��t�sin�2�t + 2�̄� + 	�p��t��P1

2
sin�2�t + 2�̄�

+ P̄�1 cos�2�t + 2�̄�� + o�	�

g2 =
1

2
���t��1 + cos�2�t + 2�̄�� − 	��1��t�sin�2�t + 2�̄� + o�	�

where

Icc =�
0

t

h�t − s�� P̄�s�

P̄�t�
�1/p

cos��t + �̄�cos��s + �̄�ds

Iss =�
0

t

h�t − s�� P̄�s�

P̄�t�
�1/p

sin��t + �̄�sin��s + �̄�ds

Ics =�
0

t

h�t − s�� P̄�s�

P̄�t�
�1/p

cos��t + �̄�sin��s + �̄�ds

Isc =�
0

t

h�t − s�� P̄�s�

P̄�t�
�1/p

sin��t + �̄�cos��s + �̄�ds

Jcc =�
0

t

h�t − s�� P̄�s�

P̄�t�
�1/p� P1

P̄�s�
−

P1

P̄�t�
�cos��t + �̄�cos��s

+ �̄�ds

Jsc =�
0

t

h�t − s�� P̄�s�

P̄�t�
�1/p� P1

P̄�s�
−

P1

P̄�t�
�sin��t + �̄�cos��s

+ �̄�ds

Thus, Eq. �3.3� can be written as

�P̄
˙

�̇̄
� = 	 f1

*

f2
*� + 	2 f1

**

f2
**� + 	1/2g1

*

g2
*� + 	3/2g1

**

g2
**� + o�	2�

�3.5�

where

f1
* = − �pP̄Isc −

�P1

�t
f2
* = − �Icc −

��1

�t

g1
* =

1

2
�pP̄��t�sin�2�t + 2�̄� g2

* =
1

2
���t��1 + cos�2�t + 2�̄��

f1
** = −

�P1

�P̄
f1
* −

�P1

��̄
f2
* − ��pP1Isc + pP̄�1�Icc − Iss� + P̄Jsc�

f2
** = −

��1

�P̄
f1
* −

��1

��̄
f2
* + ���1�Ics + Isc� −

1

p
Jcc�

g1
** = −

�P1

�P̄
g1

* −
�P1

��̄
g2

* + �p��t��P1

2
sin�2�t + 2�̄�

+ P̄�1 cos�2�t + 2�̄��
g2

** = −
��1

�P̄
g1

* −
��1

��̄
g2

* − ��1��t�sin�2�t + 2�̄� �3.6�

From Sec. 2, it is known that

M
t

�Isc� =
1

2
Hs���

in which P̄ is treated as a constant under the averaging operation.

The first-order term in the P̄ of Eq. �3.5� is given by f1
*, which,

after averaging, should be the same as the result of the first-order
averaging. Setting f1

* to the averaged result of the deterministic
term in the P of Eq. �2.4�, i.e., Mt�F1

�1�� in m̄P of Eq. �2.5�, one
obtains

�P1

�t
= − �pP̄�Isc −

1

2
Hs����

When P̄ is treated as a constant in Isc, it can be seen that
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Isc −
1

2
H s��� =�

0

t

h�t − s�sin��t + �̄�cos��s + �̄�ds

−
1

2�
0

�

h�
�sin �
d


=�
0

t

h�
�sin��t + �̄�cos��t − �
 + �̄�d


−
1

2�
0

�

h�
�sin �
d


=
1

2�
0

�

h�
�sin�2�t − �
 + 2�̄�d
 −�
t

�

h�
�sin��t

+ �̄�cos��t − �
 + �̄�d
 �3.7�

and

��
t

�

h�
�sin��t + �̄�cos��t − �
 + �̄�d
� ��
t

�

�h�
��d


From conditions �1.7�, h�t� is absolutely integrable over �0,��,
this means that the second integral in Eq. �3.7� tends to zero as t
tends to infinity. Therefore, one can approximately choose

�P1

�t
= −

1

2
�pP̄�

0

�

h�
�sin�2�t − �
 + 2�̄�d


= −
1

2
�pP̄�H c���sin�2�t + 2�̄� − H s���cos�2�t + 2�̄��

i.e.,

P1 =
1

4
pP̄�H c���cos�2�t + 2�̄� + H s���sin�2�t + 2�̄��

�3.8�
Similarly, noticing that

��1

�t
= − ��Icc −

1

2
H c����

it can be approximately set

��1

�t
= −

1

2
��H c���cos�2�t + 2�̄� + H s���sin�2�t + 2�̄��

or

�1 =
1

4
�H s���cos�2�t + 2�̄� − H c���sin�2�t + 2�̄�� �3.9�

Since P1 and �1 have been determined, Eqs. �3.5� can be sim-
plified by substituting Eqs. �3.8� and �3.9� into Eqs. �3.6�, and then
the stochastic averaging method presented in Sec. 2 can be per-
formed for Eqs. �3.5�. Thus, following the same procedure as the
first-order averaging, after some tedious deduction, the averaged

version of Eqs. �3.5� is given by, still denoted by P̄ and �̄,

dP̄ = m̄P
*dt + �̄11

* dW1 + �̄12
* dW2

d�̄ = m̄�
*dt + �̄21

* dW1 + �̄22
* dW2

where higher-order terms have been neglected, and

m̄P
* = 	�pP̄�−

1

2
H s��� +

p + 2

16
�S�2���

+ 	2 p�p + 2�
16

�2P̄H c���S�2��

�3.10�

m̄�
* = 	��−

1

2
H c��� −

1

8
���2��� + 	21

8
��− �H c����2 − �H s����2

− �H c�����2���

b11
* = ��̄*�̄*T�11 =

1

8
�2p2P̄2S�2���	 + 	2Hc����

b12
* = ��̄*�̄*T�12 = b21

* = ��̄*�̄*T�21 = 0

b22
* = ��̄*�̄*T�22 =

1

8
�2�S�2�� + 2S�0���	 + 	2Hc����

Similar to the first-order averaging, it can be seen that �̄12
* = �̄21

*

=0 and thus

�̄11
* = �b11

* = �pP̄�1

8
S�2���	 + 	2H c����

�3.11�

�̄22
* = �b22

* = ��1

8
�S�2�� + 2S�0���	 + 	2H c����

Therefore, by taking the expectation on both sides of the Itô dif-

ferential equation for P̄, one has

dE�P̄� = 	�p�−
1

2
H s��� +

p + 2

16
�S�2���

+ 	2 p�p + 2�
16

�2H c���S�2���E�P̄�dt

and the pth moment Lyapunov exponents, including the second-
order term, are

��p� = 	�p�−
1

2
H s��� +

p + 2

16
�S�2���

+ 	2 p�p + 2�
16

�2H c���S�2�� �3.12�

Obviously, the Lyapunov exponent for the second-order averaging
is given by

� = 	��−
1

2
H s��� +

1

8
�S�2��� + 	21

8
�2H c���S�2��

�3.13�

4 Numerical Results and Discussion
In order to check the accuracy of the approximate results ob-

tained by the method of stochastic averaging, Monte Carlo simu-
lation is applied to compute the moment Lyapunov exponents.

In the Monte Carlo simulation, the viscoelastic kernel function
takes the form of Eq. �2.18�, i.e.,

h�t� = 

j=1

M

� je
−�jt

where M is selected to be 2. Two different models of wideband
noise approximation, i.e., Gaussian white noise and real noise,
will be discussed separately.

Case I. The wideband noise is taken as the simplest model, i.e.,
Gaussian white noise �1.1�.

Letting
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x1�t� = q�t� x2�t� = q̇�t�
�4.1�

xj+2�t� =�
0

t

� je
−�j�t−s�q�s�s j = 1, . . . ,M

Eq. �1.14� can be written as an �M +2� degree-of-freedom system
of Itô differential equations

d�
x1

x2

x3

]

xM+2

� = �
0 1 0 0 0

− �2 − 2	� 	�2
¯ 	�2

�1 0 − �1 0 0

] 0 0 � 0

�M 0 0 0 − �M

��
x1

x2

x3

]

xM+2

�dt

+�
0

− 	1/2��2x1

0

]

0
�dW�t� �4.2�

Equation �4.2� is linear homogeneous, and the algorithm intro-
duced in �13� can be applied to simulate the moment Lyapunov
exponents. The norm for calculating the moment Lyapunov expo-
nents is �x�= �x1

2+x2
2�1/2. The iteration equations are given by, us-

ing the explicit Euler scheme �14�,

x1
k+1 = x1

k + x2
k�t

x2
k+1 = x2

k + �− �2x1
k − 2	�x2

k + 	�2

j=1

M

xj+2
k 	�t − 	1/2��2x1

k�Wk

xj
k+1 = xj

k + �� jx1
k − � jxj+2

k ��t j = 1, . . . ,M �4.3�

with �t being the time step and k denoting the kth iteration.
Figure 1 shows typical results of the moment Lyapunov expo-

nents for different values of 	 and �, where the parameters are
taken as �=0.05, �1=�1=1, �2=�2=0.5, and �=1. The analytical
results from the first-order and the second-order averaging are
also included in the figure. In Monte Carlo simulation, the sample
size for estimating the expected value is S=5000, time step is
�t=0.0001, and the total length of time for simulation is T
=5000, i.e., the number of iteration is N=5�107.

It can be seen that the first-order averaging results agree with
the simulation results very well when 	 and � are small, i.e., the
intensity of noise is weak. The second-order averaging does give
better approximation. As shown in Eqs. �2.14� and �2.15�, when
the intensity of noise � increases, the system becomes more and
more unstable in the sense that the Lyapunov exponents and mo-
ment Lyapunov exponents �for p�0� increase.

Figures 2 and 3 illustrate the variation of moment Lyapunov
exponents from second-order averaging with respect to the vis-
coelastic characteristic parameters � and �. The curves ��p�=0
give the boundaries of the moment stability. The pth moments for
p�0 are of interest in application. As the figures show, with the
increase of viscoelastic intensity �, the stability region for p�0
becomes wider, which indicates that the viscoelasticity helps to
stabilize the system. Moreover, when � increases, i.e., when the
relaxation time of viscoelasticity decreases, the stability region for
p�0 becomes narrower, implying that larger relaxation time
helps to stabilize the system.

Case II. The wideband noise is approximated by a real noise,
the Ornstein–Uhlenbeck process, given by Eq. �1.2�.

Fig. 1 Moment Lyapunov exponents under white noise excita-
tion for different � and �

Fig. 2 Moment Lyapunov exponents under white noise
excitation

Fig. 3 Moment Lyapunov exponents under white noise
excitation
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Denoting

x1�t� = q�t� x2�t� = q̇�t�
�4.4�

xj+2�t� =�
0

t

� je
−�j�t−s�q�s�s j = 1, . . . ,M xM+3�t� = ��t�

Eq. �1.14� is converted to the Itô differential equations

d�
x1

x2

x3

]

xM+2

xM+3

� = �
0 1 0 0 0 0

− �2 − 2	� 	�2
¯ 	�2 − 	1/2�2x1

�1 0 − �1 0 0 0

] 0 0 � 0 0

�M 0 0 0 − �M 0

0 0 0 0 0 − �

�
��

x1

x2

x3

]

xM+2

xM+3

�dt +�
0

0

0

0

0

�

�dW�t� �4.5�

Thus, the discretized equations using the explicit Euler scheme are

x1
k+1 = x1

k + x2
k�t

x2
k+1 = x2

k + �− �2x1
k − 2	�x2

k + 	�2

j=1

M

xj+2
k − 	1/2�2x1

kxM+3
k 	�t

xj+2
k+1 = xj+2

k + �� jx1
k − � jxj+2

k ��t j = 1, . . . ,M �4.6�

xM+3
k+1 = xM+3

k + �− �xM+3
k ��t + ��Wk

The norm for calculating the moment Lyapunov exponents is
taken as �x�= �x1

2+x2
2�1/2. The moment Lyapunov exponents for

different values of viscoelastic parameters are illustrated in Figs. 4
and 5, with 	=0.1, �=0.05, and �=�=�=1. Other parameters
for numerical iterations are the same as for the case of Gaussian
white noise. Figure 4 shows that the stronger the viscoelasticity
�i.e., larger � j�, the more stable the system, and larger relaxation
times �i.e., smaller � j� make the system more stable, as shown in
Fig. 5. These conclusions are indicated by Eq. �2.17� and are the
same as the case of Gaussian white noise excitation.

Figures 4 and 5 also indicate that the second-order averaging
method does not improve the accuracy of approximation signifi-
cantly. Therefore, the approximate results from the first-order av-
eraging are acceptable in engineering applications.

Figure 6 illustrates the comparison of moment Lyapunov expo-
nents for different values of �, with 	=0.1, �=0.05, �1=1, �1
=2, �2=�2=�=1, and �=2. As discussed in Sec. 1, the power
spectral density of real noise is flatter for larger values of � and
thus a real noise can be considered as a wideband noise. The
simulation results show that, when � is large but still in the same
order as �, this approximation is acceptable.

It should also be mentioned that, for the Euler scheme in the
Monte Carlo simulation of stochastic differential equations, the
error of discrete approximation is of the order of �t in the weak
sense, i.e., convergence in probability. Since the numerical esti-
mation of moment Lyapunov exponents requires large time T for
simulation, the iteration time step must be small enough; this in-
creases the computation resource significantly. Therefore, the dis-
crepancy between the simulation results and averaging results is
partly contributed by the error in discretization.

Figures 7 and 8 show the variation of moment Lyapunov expo-
nents from second-order averaging with respect to the parameters

Fig. 4 Moment Lyapunov exponents under real noise excita-
tion for different �

Fig. 5 Moment Lyapunov exponents under real noise excita-
tion for different �

Fig. 6 Moment Lyapunov exponents under real noise excita-
tion for different �
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of real noise. From Fig. 7, it can be seen that the larger the noise
parameter �, the wider the stability region for p�0, i.e., the more
stable the system. According to Eq. �1.3�, larger � means that the
power of noise spreads over a wider frequency band, which re-
duces the power of the noise in the neighborhood of resonance.
Figure 8 shows that with the increase of noise intensity �, the
stability region of the pth moment �for p�0� dwindles away as
expected.

5 Conclusion
To investigate the stochastic stability of a SDOF viscoelastic

system under the excitation of wideband noise, the method of

averaging, both first order and second order, is applied to deter-
mine the moment Lyapunov exponents. Since the viscoelastic
term can be expressed as an integral, the method of stochastic
averaging for general stochastic systems by Khasminskii and the
method of averaging for integrodifferential equations by Larionov
are combined to obtain the approximate moment Lyapunov expo-
nents analytically. Approximate results of the pth moment
Lyapunov exponent are obtained for general kernel functions sat-
isfying the boundedness conditions. In Monte Carlo simulation,
kernels in the form of combination of Maxwell models are used to
illustrate the results. Simulation results show that the averaging
methods provide good approximations for SDOF viscoelastic sys-
tems under the excitation of weak wideband noises.

It can be concluded, from the approximate analytical results and
the Monte Carlo simulation results of the moment Lyapunov ex-
ponents, that the increase of the intensity of material relaxation �,
relaxation time 1 /�, and the decrease of noise intensity � help to
stabilize the viscoelastic system. This result is useful in engineer-
ing applications.
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Vibrations of Double-Walled
Carbon Nanotubes With Different
Boundary Conditions Between
Inner and Outer Tubes
Free vibrations of a double-walled carbon nanotube (DWNT) are studied. The inner and
outer carbon nanotubes are modeled as two individual elastic beams interacting each
other by van der Waals forces. An original method is proposed to calculate the first seven
order resonant frequencies and relative vibrational modes. Detailed results are demon-
strated for DWNTs according to the different boundary conditions between inner and
outer tubes, such as fixed-free, cantilever-free, fixed-simple and fixed-fixed (reduced form)
supported ends. Our results indicate that there is a special invariable frequency for a
DWNT that is not affected by different combinations of boundary conditions. All vibra-
tional modes of the DWNT must be coaxial when the resonant frequency is smaller than
this frequency. Some noncoaxial vibrations will occur when their resonant frequencies
exceed the frequency. Especially, the first noncoaxial resonant frequency is still invari-
able for all different boundary conditions. A change of resonant frequency for various
lengths of DWNTs is discussed in detail. In addition, our model predicts a new coaxial-
noncoaxial vibrational mode in fixed-simple supports for inner and outer tubes of a
DWNT. �DOI: 10.1115/1.2793133�

Keywords: carbon nanotube, vibration, resonant frequency, vibrational mode, boundary
condition

1 Introduction
Carbon nanotubes �CNTs� have become the most promising

materials for nanoelectronics, nanodevices, and nanocomposites
because of their unusual electronic properties and superior me-
chanical strength �1–4�. The mechanical behavior of CNTs, in-
cluding vibrational behavior, has been the subject of numerous
recent studies. Since controlled experiments at nanoscale are dif-
ficult and molecular dynamics simulations remain formidable for
large scale systems, continuum elastic models have been widely
used to study the mechanical behavior of CNTs. The classical
Euler and Timoshenko elastic-beam models have been effectively
used to study overall mechanical deformation of CNTs, including
mechanical properties, static deflection, column buckling, reso-
nant frequencies and modes, and sound wave propagation in
CNTs �5–11�. In most previous works, multiwall nanotubes
�MWNTs� have been modeled as Euler or Timoshenko elastic
beams with the same boundary conditions for all tubes. In particu-
lar, the single elastic-beam model has been used to study static
and dynamic behaviors of MWNTs �12,13�. As shown in Ref. �14�
for the vibration of MWNTs, such a simplified model is adequate
for a MWNT of aspect �length-to-diameter� ratio no less than 10.
Many proposed applications and designs of CNTs are involved
with aspect ratio about 10, or periodically supported CNTs with
finite spans. Such examples include suspended crossing CNTs
with spans about 20 nm �15�, CNTs as single-electron transistors
of length down to 20 nm �16�, MWNTs of aspect ratio around 20
�about 300 nm long and 10–20 nm in diameter� as electrometers
�17� or building blocks in nanoelectronics �18�, CNT-
nanomechanical switches of aspect ratio around 10 �19�, and
CNTs of aspect ratio about 10–25 as atomic force microscope

�AFM� tips �20,21�. Owing to the hollow structure of CNTs, short
CNTs are preferred in many cases to prevent undesirable kinking
and buckling. Therefore, the vibrational behavior of short CNTs,
say, of aspect ratio between 10 and 30, is of practical significance.
For short CNTs, the existing results show that the noncoaxial in-
tertube vibration of MWNTs will be excited at higher frequencies
at which the characteristic wavelength of vibrational modes is just
a few times the outermost diameter of MWNTs. For instance, for
a 1.4 nm diameter double-walled carbon nanotube �DWNT� of
aspect ratio between 10 and 30, the wavelength of the higher-
order modes is just a few times the outermost diameter, and the
associated vibrational modes are substantially noncoaxial. Since
noncoaxial distortion could significantly affect some important
physical �such as electronic and optical� properties of MWNTs,
the study of noncoaxial vibration has attracted attention recently.
A noncoaxial vibrational mode, firstly predicted by a simple linear
multiple-beam model �14�, is found to agree well with more re-
cent atomistic simulations on the noncoaxial vibration of MWNTs
�22,23�.

Most CNTs to date have been synthesized with closed ends �4�.
For an application of a MWNT, both its ends can be restricted
only on the outer tube. For example, in a nanoelectromechanical
system �NEMS�, the small size and unique properties of CNTs
suggest that they can be used in sensor devices with unprec-
edented sensitivity �24�. Other relevant issues to be clarified are
the effects of differential boundary supports between the inner and
outer tubes on the vibration of MWNTs and boundary effects on
transverse vibration devices composed of rods in microelectrome-
chanical systems �MEMSs� �25�. It is expected that the differences
of boundary conditions, which are ignored in the existing beam
model, would play an important role in the vibration of a DWNT
when the vibrational modes at a resonant frequency between the
two tubes are considered. Especially for short DWNTs, some
changes of boundary conditions may affect the vibrational modes
more sensitively. For this reason, the relevance of the existing
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model, in which both tubes have the same boundary conditions for
the vibration of DWNTs, is questionable. To clarify this issue, free
vibrations of DWNTs with differential boundary supports between
inner and outer tubes are studied in this paper based on a double
elastic-beam model developed in Refs. �10,14�. Unlike the previ-
ous work, however, the boundary conditions of DWNTs in the
present paper are represented as different combinations of the in-
ner and outer tubes, instead of the same boundary conditions used
in all previous related works. The major goal of this paper is to
study the free vibrations of DWNTs with different boundary con-
ditions between inner and outer tubes. The first seven order reso-
nant frequencies and related vibrational modes are calculated by
the proposed method for a short DWNT with an inner diameter of
0.7 nm, an outer diameter of 1.4 nm, and length of 14 nm. Our
results indicate that a special frequency exists, which can distin-
guish the coaxial and first noncoaxial resonant frequencies of a
DWNT. This special frequency and the first noncoaxial resonant
frequency are not affected by different combinations of boundary
conditions. A new coaxial-noncoaxial vibrational mode is found in
fixed-simple supports for inner and outer tubes of a DWNT. In
addition, the changes of resonant frequency for various lengths of
DWNTs and a reduced situation such as both inner and outer tubes
fixed are discussed in detail.

2 Mode Functions for the Vibration of a Double-
Walled Carbon Nanotube

Many studies have showed that the classical Euler elastic-beam
offers a reliable model for the overall mechanical deformation of
CNTs �5�. For example, static deflection of CNTs under point load
is found to be well predicted by the beam model �6�, and resonant
frequencies and vibrational modes of CNTs given by the cantile-
ver beam model are in good agreement with experimental data
�12�. In particular, because elastic-beam models give simple gen-
eral formulas in many important cases, such as critical stress for
column buckling, resonant frequencies, and sound speeds, which
clearly indicate major factors affecting the mechanical behavior of
CNTs, they have the potential to identify key parameters and pre-
dict some physical phenomena.

It is known that the governing equations for a linear free vibra-
tion of a DWNT are

c1�w2 − w1� = EI1
�4w1

�x4 + �A1
�2w1

�t2

− c1�w2 − w1� = EI2
�4w2

�x4 + �A2
�2w2

�t2 �1�

where x is the axial coordinate, t is time, wk= �x , t�, Ik, and Ak

�k=1,2� are the deflections, moments of inertia, and cross-
sectional area of the inner tube and outer tube, respectively. We
assume that two tubes have the same Young’s modulus E
=1 TPa and the mass density �=2.3g /cm3 �9,10�. The van der
Waals �vdW� interlayer interaction coefficient c1= ��2U /��2��=�0
�2R �where R is the inner tube radius of the DWNT� is derived
from the interlayer potential per unit area U, which is expressed in
terms of the interlayer spacing �, namely,

U��� = K���0

�
�4

− 0.4��0

�
�10	 �2�

where K=−61.665 meV/atom and �0=0.34 is the equilibrium
spacing of which the vdW force is zero. For example, if the inner
tube diameter is 0.7 nm and the outer tube diameter is 1.4 nm,
then c1=71.11 GPa �10�.

In general, the inner and outer tubes should have different vi-
brational modes Yk�x� �k=1,2�. Then, the displacements of the
inner and outer tubes can be represented by

w1 = Y1ei�t w2 = Y2ei�t �3�

where � is a resonant frequency of the DWNT. Substituting ex-
pressions �3� into Eqs. �1�, and dividing by ei�t, yield

EI1Y1
4 − �A1�2Y1 = c�Y2 − Y1�

EI2Y2
4 − �A2�Y2 = − c�Y2 − Y1� �4�

Furthermore, one can write the vibrational modes as

Y1 = B1e�x Y2 = B2e�x �5�

where Bk �k=1,2� and � are constants that wait for a determina-
tion. Substituting expressions �5� into Eqs. �4�, and dividing by
e�x, yields a matrix equation,

�c + EI1�4 − �A1�2 − c

− c c + EI2�4 − �A2�2 ��B1

B2
� = 0 �6�

Accordingly, Bk �k=1,2� can be determined by the existence con-
dition for a nonzero solution of Eq. �6�, which leads to an eight
order algebraic equation,

��4 +
c − �A1�2

EI1
���4 +

c − �A2�2

EI2
� −

c2

E2I1I2
= 0 �7�

In order to solve Eq. �7�, let �4=� give

�� +
c − �A1�2

EI1
��� +

c − �A2�2

EI2
� −

c2

E2I1I2
= 0 �8�

The quadratic equation �Eq. �8�� for the unknown quantity � has
two real roots,

�1,2 =
− „�c − �A1�2�/EI1 + �c − �A2�2�/EI2… � 
�

2
�9�

where

� = � c − �A1�2

EI1
−

c − �A2�2

EI2
�2

+ 4
c2

E2I1I2
	 0 �10�

For any resonant frequency �, �1 is always bigger than zero, but
the sign of �2 is changed from minus to positive for increasing
values of �. A specific frequency �0 exists in Eq. �9� so that

�1 	 0 �2�
0 �� 
 �0�
	0 �� 	 �0� � �11�

For example, with a DWNT of length of 14 nm, outer tube diam-
eter of 1.4 nm, and interspace between outer and inner tubes of
0.34 nm, Eq. �9� leads to

�0 = 7.8456 � 1012 Hz �12�

When the resonant frequency �
�0, for �4=�1��1	0�, we have

�1 = �1
1/4 �2 = − �1

1/4 �3 = i�1
1/4 �4 = − i�1

1/4 �13�

For �4=�2��2
0�, the other four roots are complex numbers,
namely,

�5 = �1 + i�

2

2
�− �2�1/4 �6 = − �1 + i�


2

2
�− �2�1/4

�7 = �− 1 + i�

2

2
�− �2�1/4 �8 = �1 − i�


2

2
�− �2�1/4 �14�

When the resonant frequency �	�0, and then �1	0 and �2
	0, too, all eight roots for �4=�1,2 can be represented by real and
imaginary numbers,

�1 = �1
1/4 �2 = − �1

1/4 �3 = i�1
1/4 �4 = − i�1

1/4
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�5 = �2
1/4 �6 = − �2

1/4 �7 = i�2
1/4 �8 = − i�2

1/4 �15�
According to Eq. �5�, the vibrational modes for inner and outer
tubes are linear combinations, e.g.,

Y1 = 
i=1

8

B1ie
�ix Y2 = 

i=1

8

B2ie
�ix �16�

�i� When �
�0, from Eqs. �13� and �14� the vibrational
mode functions Y1 and Y2 are

Yk = Ak1 sin ax + Ak2 cos ax + Ak3 sinh ax + Ak4 cosh ax

+ Ak5 sinh bx sin bx + Ak6 sinh bx cos bx

+ Ak7 cosh bx sin bx + Ak8 cosh bx cos bx �k = 1,2�
�17�

where the coefficients A1i ,A2i �i=1,2 , . . . ,8� are linearly
combined with B1i ,B2i �i=1,2 , . . . ,8�, and

a = ��1�1/4 b =

2

2
�− �2�1/4 �18�

�ii� When resonant frequency �	�0, and then �1	0 and
�2	0, from Eqs. �15� the vibrational mode functions Y1
and Y2 are

Yk = Ak1 sin ax + Ak2 cos ax + Ak3 sinh ax + Ak4 cosh ax

+ Ak5 sin bx + Ak6 cos bx + Ak7 sinh bx

+ Ak8 cosh bx �k = 1,2� �19�
where

a = ��1�1/4 b = ��2�1/4 �20�

On the other hand, substituting arbitrary �i �i=1,2 , . . . ,8� into
any one of Eq. �6� �because the two equations in Eq. �6� are linear
dependence� yields

B2i =
�i

4EI1 + c − �A1�2

c
B1i �i = 1,2, . . . ,8� �21�

It is easily verified that A1i ,A2i �i=1,2 , . . . ,8� obey

A2i =
s4EI1 + c − �A1�2

c
A1i �i = 1,2, . . . ,8� �22�

where

s = ��1 �i = 1,2,3,4�
�2 �i = 5,6,7,8� � �23�

Now, there are eight constants A1i �or A2i� �i=1,2 , . . . ,8� in Eqs.
�17� and �19�, which represent the vibrational modes of a DWNT
to be determined by boundary conditions.

3 Vibrations of a Double-Walled Carbon Nanotube
With a Free Inner Tube and a Fixed Outer Tube

Let us consider a DWNT with a free inner tube and a fixed
outer tube; the length �l� is 14 nm and the outer tube diameter is
1.4 nm. For the free inner tube and fixed outer tube the boundary
conditions satisfy the equations

�2

�2x
w1�0,t� =

�2

�2x
w1�l,t� = 0

�3

�3x
w1�0,t� =

�3

�3x
w1�l,t� = 0

w2�0,t� = w2�l,t� = 0

�

�x
w2�0,t� =

�

�x
w2�l,t� = 0 �24�

From Eqs. �24�, It is easy to obtain the vibrational mode Yk�x�
�k=1,2� and obey the boundary conditions as follows:

d2

dx2Y1�0� =
d2

dx2Y1�l� = 0
d3

dx3Y1�0� =
d3

dx3Y1�l� = 0

Y2�0� = Y2�l� = 0
d

dx
Y2�0� =

d

dx
Y2�l� = 0 �25�

�i� When the resonant frequency �
�0=7.8456�1012 Hz,
substituting Yk �k=1,2� represented in Eq. �17� into the
boundary conditions �25� and noticing Eq. �22� gives eight
linear algebraic equations for unknown constants A1i �i
=1,2 , . . . ,8� in the following forms:

− a2A12 + a2A14 + 2b2A15 = 0

− a3A11 + a3A13 − 2b3A16 + 2b3A17 = 0

− a2A11 sin al − a2A12 cos al + a2A13 sinh al

+ a2A14 cosh al + 2b2A15 cos bl

− 2b2A16 cosh bl sin bl + 2b2A17 cos bl sinh bl

− 2b2A18 sin bl sinh bl = 0

− a3A11 cos al + a3A12 sin al

+ a3A13 cosh al + a3A14 sinh al

+ 2b3�− cosh bl sin bl + cos bl sinh bl�A15

− 2b3�cos bl cosh bl + sin bl sinh bl�A16

+ 2b3�cos bl cosh bl − sin bl sinh bl�A17

− 2b3�cosh bl sin bl + cos bl sinh bl�A18 = 0

agA11 + agA13 + bhA16 + bhA17 = 0

gA12 + gA14 + hA18 = 0

gA12 cos al + gA14 cosh al + hA18 cos bl cosh bl

+ gA11 sin al + hA17 cosh bl sin bl + gA13 sinh al

+ hA16 cos bl sinh bl + hA15 sin bl sinh bl = 0

agA11 cos al − agA12 sin al

+ agA13 cosh al + agA14 sinh al

+ bhA15�cosh bl sin bl + cos bl sinh bl�

+ bhA16�cos bl cosh bl − sin bl sinh bl�

+ bhA17�cos bl cosh bl + sin bl sinh bl�

− bhA18�cosh bl sin bl − cos bl sinh bl� = 0 �26�

where g and h are the amplitude ratio A2i /A1i �i=1,2 ,
. . . ,8� of every harmonic vibration, which are defined as

g =
�1

4EI1 + c − �A1�2

c
h =

�2
4EI1 + c − �A1�2

c
�27�

Each order resonant frequency � can be determined by the
existence condition for a nonzero solution A1i �i=1,2 ,
. . . ,8� of linear homogenous equations �Eqs. �26�� when
the resonant frequency �
�0=7.8456�1012 Hz.

�ii� When the resonant frequency �	�0=7.8456�1012 Hz, it
is evident that the vibrational modes Yk �k=1,2� are
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adopted by Eq. �19�. From boundary conditions �25� and
Eq. �22�, the coefficients A1i �i=1,2 , . . . ,8� satisfy linear
homogenous equations,

− a2A12 + a2A14 + 2b2A15 = 0

− a3A11 + a3A13 − 2b3A16 + 2b3A17 = 0

− a2A11 sin al − a2A12 cos al + a2A13 sinh al

+ a2A14 cosh al + 2b2A15 cos bl

− 2b2A16 cosh bl sin bl + 2b2A17 cos bl sinh bl

− 2b2A18 sin bl sinh bl = 0

− a3A11 cos al + a3A12 sin al

+ a3A13 cosh al + a3A14 sinh al

+ 2b3�− cosh bl sin bl + cos bl sinh bl�A15

− 2b3�cos bl cosh bl + sin bl sinh bl�A16

+ 2b3�cos bl cosh bl − sin bl sinh bl�A17

− 2b3�cosh bl sin bl + cos bl sinh bl�A18 = 0

agA11 + agA13 + bhA15 + bhA17 = 0

gA12 + gA14 + hA16 + hA18 = 0

gA12 cos al + hA16 cos bl + gA14 cosh al + hA18 cosh bl

+ gA11 sin al + hA15 sin bl + gA13 sinh al

+ hA17 sinh bl = 0

agA11 cos al − agA12 sin al + agA13 cosh al

+ agA14 sinh al + bhA15 cos bl − bhA16 sin bl

+ bhA17 cosh bl + bhA18 sinh bl = 0 �28�

where g and h are the same as expression �27�. The reso-
nant frequency � can be determined by the existence con-
dition for a nonzero solution A1i �i=1,2 , . . . ,8� of Eqs.
�28� when the resonant frequency �	�0=7.8456
�1012 Hz.

From the lowest resonant frequency, the first seven order reso-
nant frequencies are shown in Table 1. It can be found that from
the fourth resonant frequency, all higher-order frequencies are big-
ger than �0=7.8456�1012 Hz. Substituting the resonant frequen-
cies � j �j=1,2 ,3� into Eqs. �18� and �22�, then combining with
Eq. �17�, as well as substituting � j �j=4,5 ,6 ,7� into Eqs. �20�
and �22�, then combining with Eq. �19�, one can obtain related
vibrational modes for eight order resonant frequencies � j �j
=1,2 , . . . ,8�, which are shown in Fig. 1. It is seen from Fig. 1 that
the first three vibrational modes are coaxial, and some noncoaxial
vibrational modes occur when the resonant frequency �	�0
=7.8456�1012 Hz, such as the fourth, fifth, and seventh modes.
The vibration at a higher resonant frequency causes complex non-
coaxial distortion of the DWNT. Of course, the jump of the de-

flections between two tubes is bounded by the initial intertube
spacing �about 0.34 nm�. This is not a problem for small-
deflection linear vibrations studied here.

Furthermore, let us consider the effect of the length of a DWNT
on the resonant frequency. The first three order resonant frequen-
cies of a DWNT with various lengths are listed in Table 2. It is
observed that any resonant frequency decreases for increasing
length of the DWNT.

4 Vibrations of a Double-Walled Carbon Nanotube
With a Free Inner Tube and a Cantilever Outer Tube

In this case, it is evident that the governing equations for a
linear free vibration of a DWNT are the same as Eqs. �1�. The
boundary conditions for a free inner tube and a cantilever outer
tube can be written as

�2

�2x
w1�0,t� =

�2

�2x
w1�l,t� = 0

�3

�3x
w1�0,t� =

�3

�3x
w1�l,t� = 0

w2�0,t� =
�

�x
w2�0,t� = 0

�2

�x2w2�l,t� =
�3

�x3w2�l,t� = 0 �29�

The vibrational modes Yk�x� �k=1,2� satisfy the boundary condi-
tions, which are derived from Eqs. �29�, namely,

d2

dx2Y1�0� =
d2

dx2Y1�l� = 0
d3

dx3Y1�0� =
d3

dx3Y1�L� = 0

Y2�0� =
d

dx
Y2�0� = 0

d2

dx2Y2�l� =
d3

dx3Y2�l� = 0 �30�

Using the same method and procedure shown in Sec. 3, the
vibrational mode functions are given by expression �17� when
resonant frequency �
�0=7.8456�1012 Hz, and by expression
�19� when �
�0=7.8456�1012 Hz. The first seven order reso-
nant frequencies are shown in Table 3.

It can be found that the sixth and seventh resonant frequencies
are bigger than �0=7.8456�1012 Hz in Table 3. In comparison
with Table 1, any order resonant frequency of a DWNT with a
free inner tube and a cantilever outer tube is smaller than the same
order resonant frequency of the DWNT with a free inner tube and
a fixed outer tube. The related vibrational modes are shown in Fig.
2. It is observed from Fig. 2 that the first five vibrational modes
are coaxial, and when the resonant frequency �	�0=7.8456
�1012 Hz, the sixth and seventh modes are noncoaxial. Addition-
ally, our results show that with the increase of resonant frequency,
the vibrational modes of the inner and outer tubes gradually turn
to noncoaxial vibrations from coaxial vibrations.

Table 4 lists the first three order resonant frequencies of a
DWNT with various lengths for this end conditions. Like free
vibrations of a single beam, any resonant frequency decreases for
increasing length of the DWNT.

5 Vibrations of a Double-Walled Carbon Nanotube
With a Simple Inner Tube and a Fixed Outer Tube

Besides governing Eqs. �1�, the boundary conditions for a
simple inner tube and a fixed outer tube can be written as

w1�0,t� = w1�l,t� = 0

�2

�2x
w1�0,t� =

�2

�2x
w1�l,t� = 0

Table 1 Resonant frequencies „1012 Hz… of a DWNT with a free
inner tube and a fixed outer tube with an inner diameter of
0.7 nm, an outer diameter of 1.4 nm, and length of 14 nm

Mode
1 2 3 4 5 6 7

1.04 2.84 5.14 7.89 8.13 8.38 9.35
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w2�0,t� = w2�l,t� = 0

�

�x
w2�0,t� =

�

�x
w2�l,t� = 0 �31�

From Eqs. �31�, vibrational mode Yk�x� �k=1,2� satisfies the
boundary conditions,

Y1�0� = Y1�l� = 0
d2

dx2Y1�0� =
d2

dx2Y1�l� = 0

Y2�0� = Y2�l� = 0
d

dx
Y2�0� =

d

dx
Y2�l� = 0 �32�

Still like the previous sections, here, the first seven order reso-
nant frequencies are shown in Table 5. Because the fifth order
resonant frequency �5	�0=7.8456�1012 Hz, some vibrational
modes must be noncoaxial when the resonant frequency ���5.

As shown in Fig. 3, the first four order vibrational modes are
coaxial, and the fifth and sixth modes are noncoaxial. It is also
observed from Fig. 3 that the seventh mode includes not only
coaxial vibration in the middle of the DWNT, but also noncoaxial
vibrations that occur in both end parts of the DWNT. It is a new
vibrational phenomenon.

The first three order resonant frequencies of a DWNT with
various lengths for this end conditions are listed in Table 6.

6 Vibrations of a Double-Walled Carbon Nanotube
With Both Fixed Inner and Outer Tubes

In order to compare some results obtained by our model with
other existing results, finally, let us consider vibration problems of
a DWNT with both fixed inner and outer tubes. The governing
equations are still in the form of Eqs. �1�, and boundary conditions
are reduced to

Fig. 1 The first seven vibrational modes of a DWNT with a free inner tube and a fixed outer tube

Table 2 Resonant frequencies „1012 Hz… of a DWNT with a free
inner tube and a fixed outer tube for various lengths when the
outer diameter is 1.4 nm

Length
�nm� 14 16 18 20 24 26 28 30

�1
1.04 0.80 0.53 0.51 0.36 0.31 0.26 0.23

�2
2.84 2.20 1.75 1.42 0.99 0.85 0.73 0.64

�3
5.14 4.16 3.36 2.76 1.94 1.66 1.43 1.25

Table 3 Resonant frequencies „1012 Hz… of a DWNT with a free
inner tube and a cantilever outer tube when the inner diameter
is 0.7 nm, the outer diameter is 1.4 nm, and the length is 14 nm

Mode
1 2 3 4 5 6 7

0.17 1.04 2.89 5.29 6.55 7.89 8.17
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wk�0,t� = wk�l,t� = 0
�

�x
wk�0,t� =

�

�x
wk�l,t� = 0 �k = 1,2�

�33�

From Eqs. �33�, vibrational mode Yk�x� �k=1,2� obeys

Yk�0� = Yk�l� = 0
d

dx
Yk�0� =

d

dx
Yk�l� = 0 �k = 1,2� �34�

Through simulation computing the first six order resonant fre-
quencies of the DWNT are shown in Table 7. Noncoaxial vibra-
tional modes will occur when the resonant frequency ���4. In
particular, frequencies �1 and �4 are almost consistent with the
existing results �10�, where it is shown that the first coaxial and
noncoaxial resonant frequencies are 1.06�1012 Hz and 7.75
�1012 Hz, respectively.

Six vibrational modes with respect to their resonant frequencies
listed in Table 7 are shown in Fig. 4. It is seen from Fig. 4 that the
first noncoaxial vibrational mode occurs when resonant frequency
reaches the frequency �4�	�0=7.8456�1012 Hz�. In additional,
for both fixed inner and outer tubes of a DWNT, the inner-to-outer
tube amplitude ratio �Y1 /Y2� for any resonant frequency can be
accurately calculated. For example, the amplitude ratios from the
resonant frequencies �1 to �6 are shown in Table 8. It is found
from Table 8 that the amplitude ratio of the lowest frequency �1 is
1.02, which is in good agreement with close to unity �10,14�. On
the other hand, the amplitude ratio of the first noncoaxial vibra-
tional mode �corresponding to the frequency �4� is −1.96, which
is almost equal to −2. �10�.

We can verify from computing simulation that for vibrations of
a DWNT with both fixed inner and outer tubes, the first four terms
in mode expression �17� and �19� are dominant when coaxial vi-

Fig. 2 The first seven vibrational modes of a DWNT with a free inner tube and a cantilever outer tube

Table 4 Resonant frequencies „1012 Hz… of a DWNT with a free
inner tube and a cantilever outer tube for various lengths when
the outer diameter is 1.4 nm

Length
�nm� 14 16 18 20 24 26 28 30

�1
0.17 0.13 0.10 0.082 0.057 0.046 0.042 0.036

�2
1.04 0.80 0.63 0.51 0.36 0.30 0.28 0.25

�3
2.89 2.23 1.77 1.44 1.00 0.85 0.74 0.62

Table 5 Resonant frequencies „1012 Hz… of a DWNT with a
simple inner tube and a fixed outer tube when the inner diam-
eter is 0.7 nm, the outer diameter is 1.4 nm, and the length is
14 nm

Mode
1 2 3 4 5 6 7

1.05 2.84 5.18 7.29 7.89 8.24 9.08

021013-6 / Vol. 75, MARCH 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



brations occur; in other words, the coefficients of the last four
terms in Eq. �17� and �19� become very small. Quite the contrary,
for noncoaxial vibrations, the conclusion is just like what we ex-
pect, the last four terms in mode expression �19� are dominant in
these situations. Thus, vibrational modes of a DWNT with both
fixed inner and outer tubes can be written as simply approximate
expressions from Eqs. �17� and �19� after neglecting the small
coefficients. In particular, a coaxial vibrational mode is

Yk = Ak1 sin ax + Ak2 cos ax + Ak3 sinh ax + Ak4 cosh ax �k = 1,2�
�35�

and a noncoaxial vibrational mode

Yk = Ak5 sin bx + Ak6 cos bx + Ak7 sinh bx + Ak8 cosh bx �k = 1,2�
�36�

where a and b are also defined by Eqs. �18� ��
�0� or Eqs. �20�
��	�0�. Comparing Eqs. �35� and �36� with the involved modes
in Refs. �10,14�, they are completely the same.

7 Conclusions and Discussions
This paper studies free vibrations of a DWNT modeled as elas-

tic beams due to different boundary conditions between inner and
outer tubes. According to a combination of different boundary
conditions between the two tubes, such as fixed-free, cantilever-
free, fixed-simple, and fixed-fixed end conditions, an original and
feasible method for constructing vibrational mode and computing
resonant frequency is proposed. Our main results and some dis-
cussions are summarized as follows.

�1� For free vibrations of a DWNT, a special frequency �0
exists in a series of resonant frequencies. All vibrational
modes must be coaxial when the resonant frequency is
smaller than �0, and some noncoaxial vibrations will occur
when their resonant frequencies are bigger than �0. Addi-
tionally, the value of �0 is not changed by different com-
binations of boundary conditions between the inner and

Fig. 3 The first seven vibrational modes of a DWNT with a simple inner tube and a fixed outer tube

Table 6 Resonant frequencies „1012 Hz… of a DWNT with a
simple inner tube and a fixed outer tube for various lengths
when the outer diameter is 1.4 nm

Length
�nm� 14 16 18 20 24 26 28 30

�1
1.05 0.81 0.64 0.52 0.36 0.31 0.27 0.23

�2
2.84 2.20 1.75 1.43 1.00 0.85 0.73 0.64

�3
5.18 4.17 3.36 2.76 1.94 1.66 1.43 1.25

Table 7 Resonant frequencies „1012 Hz… of a DWNT with both
fixed inner and outer tubes when the inner diameter is 0.7 nm,
the outer diameter is 1.4 nm, and the length is 14 nm

Mode
1 2 3 4 5 6

1.08 2.94 5.49 7.90 8.13 8.24
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outer tubes of a DWNT, for example, a short DWNT of
length of 14 nm, with the inner and outer diameters of
0.7 nm and 1.4 nm, respectively, then �0=7.8456
�1012 Hz.

�2� The different boundary conditions between the inner and
outer tubes of a DWNT have little effect on the first non-
coaxial resonant frequency, which is around 7.9�1012 Hz
for a short DWNT of length of 14 nm, with the inner di-
ameter of 0.7 nm and outer diameter of 1.4 nm. On the
other hand, the first coaxial resonant frequency �the lowest
order frequency� changes with boundary conditions. The
stronger the restrictions of boundary conditions are, the
lower the first order frequencies are. Any order resonant
frequency decreases with increasing length of the DWNT.

�3� The first order noncoaxial mode of a DWNT occurs at an
invariable resonant frequency exceeding �0 firstly �around
7.9�1012 Hz�. It is a typically noncoaxial vibration whose
mode looks like an open mouth if the outer tube is fixed at
its both ends.

�4� For a DWNT with an outer tube fixed at its both ends, the
first three coaxial vibrational modes are almost the same
except for the boundary areas. The vibration at a higher
resonant frequency causes a complex noncoaxial distortion,
especially in a DWNT with a free inner tube and a cantile-
ver outer tube.

�5� Our present model for a vibrational DWNT with a simple
inner tube and a fixed outer tube predicts a new vibrational
phenomenon. The seventh mode includes not only coaxial
vibration in the middle of the DWNT, but also noncoaxial
vibrations that occur in both end parts of the DWNT.

�6� Any resonant frequency decreases with increasing length of
a DWNT. Especially, the higher resonant frequency de-
clines more quickly along with increasing length of the
DWNT. For example, Fig. 5 shows the attenuation of the
first three order resonant frequencies for the increasing
length of a DWNT with a free inner tube and a fixed outer

Fig. 4 The first six vibrational modes of a DWNT with both fixed inner and outer tubes

Table 8 The inner-to-outer tube amplitude ratios for the first
six resonant frequencies of a DWNT with both fixed inner and
outer tubes „the inner diameter is 0.7 nm, the outer diameter is
1.4 nm, and the length is 14 nm…

� 1.08 2.94 5.49 7.90 8.13 8.24

Y1 /Y2
1.02 1.15 1.69 −1.96 2.70 −1.75

Fig. 5 Resonant frequency attenuation for the increasing
length of a DWNT with a free inner tube and a fixed outer tube
with an inner diameter of 0.7 nm and an outer diameter of
1.4 nm
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tube. For other different boundary conditions, the resonant
frequency attenuations are similar to those in Fig. 5.

Our proposed model and method are applied here to free vibra-
tions of a DWNT with different boundary conditions between
inner and outer tubes. Some similar results are expected for the
role in other vibrational problems of MWNTs with different
boundary conditions among tubes. In addition, we would empha-
size that it is interesting to research and determine the main vi-
brational modes of a MWNT by a forced vibration analysis.
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Moving Load and Prestress
Identification Using
Wavelet-Based Method
A novel moving force and prestress identification method based on finite element and
wavelet-based method for bridge-vehicle system is developed. A two-axle vehicle model
and simple-supported beam with prestressing force are studied. Finite element method is
flexible in modeling structures with complex boundaries while the wavelet-analysis
method has the characteristic of multiresolution and the ability to detect abrupt changes.
Both methods are used in this work to identify the moving loads and prestressing force
from the “measured” bridge responses, which may be strain or acceleration. Numerical
simulations demonstrate the efficiency of the method under the effects of measurement
noise, road roughness, sampling rate, and the arrangement of sensors with good accu-
racy. Results indicate that the proposed method has the advantages of both high compu-
tational performance and fine identification resolution. �DOI: 10.1115/1.2793134�

Keywords: wavelet, bridge, vehicle, moving loads, inverse problem, prestress,
regularization

1 Introduction
Vehicle axle load is one of the most important factors for bridge

design. The dynamic responses of a bridge can be significant and
Cebon �1� concluded that the dynamic wheel loads may increase
the road surface damage by a fact or of 2–4 over that due to static
wheel loads. Traditional ways to acquire the vehicle axle loads
using weighbridge cause delay and subject to bias, while early
work on weigh-in-motion technique can only measure the equiva-
lent static loads.

In recent years, the technique of dynamic wheel load identifi-
cation has been developed rapidly. Existing methods can be
broadly classified into two categories with one �2� based on a
continuous bridge model and modal superposition technique to
decouple the equation of motion, and with the subsequent solution
using optimization scheme such as genetic algorithms �3�. The
second category is based on discrete bridge model with finite el-
ement method to decouple the equation of motion, such as the
state space approach �4� and the finite element method �FEM� �5�.
The modal superposition technique has good accuracy for identi-
fication but it demands heavy computation when multiple vehicles
cross a multispan bridge structure. The FEM approach is flexible
when dealing with vehicle axle loads moving on top of a bridge-
vehicle system with complex boundary conditions. The method
has efficient computational performance and good identification
accuracy especially with the orthogonal function smoothing tech-
nique to obtain the velocities and accelerations from the measured
strains �6�. No existing method is found in the literature on pre-
stress identification. Lu and Law �7,8� considered the prestressed
force in each element as a system parameter and they successfully
identified the prestressed force from the measured dynamic re-
sponses.

There has been increasing interest in the wavelet-based ap-
proach in recent years due to its success in several applications.
Amaratunga et al. �9� developed the Wavelet–Galerkin method to
solve one dimensional partial differential equation instead of the
finite difference method. The connection coefficients in the

method are described by Latto et al. �10�. Ghanem and Romeo
�11� used wavelet-based method for the identification of linear and
nonlinear time-varying dynamic systems. A wavelet-based spec-
tral finite element was developed by Mitra and Gopalakrishnan
�12� for studying elastic wave propagation in 1D connected
waveguides, and the treatment of boundaries for finite domain
analysis is given for the wavelet-based approach.

Wavelet-based method is also widely used in system identifica-
tion and damage detection for structures. Sone et al. �13� used the
continuous wavelet transform to identify the structural parameters
from the measured acceleration responses. Based on wavelet de-
compositions, Zabel �14� developed an algorithm for direct pa-
rameter estimation from the wavelet coefficients of the measured
data as well as their integrals and derivatives. A wavelet-based
method for modal parameter identification considering uncertainty
is proposed by Yan et al. �15�. Zhu and Law �16� employed the
continuous wavelet transform to identify the crack of a bridge
beam subject to a moving load. All the applications above show
the benefits of the wavelet-based method.

A new moving force identification technique using wavelet-
based method is developed in this paper. The bridge is modeled as
an Euler–Bernoulli beam with simple supports. The vehicle axle
loads as well as the prestressed force are identified from the mea-
sured strains �or accelerations� of the bridge. The main benefit
with the wavelet-based method is in the solution of the coupled
equation of motion of the bridge-vehicle system with the
Daubechies wavelet whereby both the exciting forces and mea-
sured responses are decomposed. The equations are then trans-
lated into the wavelet space in which the wavelet coefficients are
computed. The results are then transformed back into the physical
space to reconstruct the forces. This method has the advantages of
both high computational performance and fine identification reso-
lution, especially for systems with sudden irregularities in the re-
sponses due to crack or other system failures.

2 Model of the Vehicle-Bridge System

2.1 Vehicular Axle Loads. A vehicle with four degrees of
freedom moving at a uniform speed v over a simply supported
bridge deck is shown in Fig. 1. The equation of motion of the
vehicle is derived using the Lagrange formulation as follows:

Contributed by the Applied Mechanics Division of ASME for publication in the
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Journal of Applied Mechanics MARCH 2008, Vol. 75 / 021014-1Copyright © 2008 by ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�MV1 0

0 MV2
�Ÿ + �CV11 CV12

CV21 CV22
�Ẏ + �KV11 KV12

KV21 KV22
�Y

= − � 0

P�t� � + � 0

P0
� �1�

where Y= 	yV �V y1 y2
T is the vector of response of the vehicle.
P�t�= 	P1�t� P2�t�
T is the vehicle-bridge interaction force vector.
P0 is the static load vector of the vehicle. MV1 ,MV2 ,
CV11,CV12,CV21,CV22,KV11,KV12,KV21,KV22 are the mass,
damping, and stiffness matrices of the vehicle, respectively, and
they are given in the Appendix.

2.2 Modeling of the Bridge. Consider a group of loads Pi�t�
moving on top of a bridge deck modeled as an Euler–Bernoulli
beam with simple supports. The equation of motion can be written
as

�A
�2w�x,t�

�t2 + C
�w�x,t�

�t
+ PN

�2w�x,t�
�x2 + EI

�4w�x,t�
�x4

= �
i=1

NP

Pi�t���x − vit� i = 1,2, . . . ,NP �2�

where A is the cross-sectional area and � is the mass per unit
length. C and EI are the damping and flexural rigidity of the
beam, respectively. PN is the axial prestressed force. w�x , t� is the
displacement response, which varies with location x and time t. vi
is the speed of the ith moving force Pi�t�. ��t� is the Dirac delta
function. NP is the number of moving loads.

Employing the Hermitian cubic interpolation shape functions
and with the assumption of Rayleigh damping, the equation of
motion of the prestressed beam can be rewritten as

MbR̈ + C̃bṘ + K̃bR = HbP �3�

where R, Ṙ, and R̈ are the nodal displacement, velocity, and ac-
celeration vectors of bridge, respectively. HbP is the equivalent
nodal load vector from the bridge-vehicle interaction force with

Hb = �0 ¯ 0 ¯ H1 ¯ 0

0 ¯ H2 ¯ 0 ¯ 0
�T

�4�

Hb is an n�NP matrix, where n is the number of degree of free-
dom of bridge after considering the boundary condition. The
shape function Hi can be written in the global coordinate as

Hi =�
1 − 3 xj�t� − �i − 1�l

l
�2

+ 2 xj�t� − �i − 1�l
l

�3

„xj�t� − �i − 1�l… xj�t� − �i − 1�l
l

− 1�2

3 xj�t� − �i − 1�l
l

�2

− 2 xj�t� − �i − 1�l
l

�3

„xj�t� − �i − 1�l… xj�t� − �i − 1�l
l

�2

−  xj�t� − �i − 1�l
l

�� �
T

�5�

where xj�t� is the location of jth force on the ith element at time t
with �i−1�l�xj�t�� il. l is the length of the beam element.

Mb, C̃b, and K̃b are mass, damping, and stiffness matrices of
the prestressed beam. � and � are the constants of Rayleigh
damping with

C̃b = �Mb + �K̃b K̃b = Kb − Kg

Kg =
PN

30l�
36 3l − 36 3l

3l 4l2 − 3l − l2

− 36 − 3l 36 − 3l

3l − l2 − 3l 4l2
� �6�

where Kg is the geometric matrix due to the prestressing effect,
which can be calculated as

�Kg� =�
0

l � �Hi

�x
�PN� �Hi

�x
�dx �7�

where Hi is the shape function of beam element, as given in Eq.
�5�.

3 Wavelet–Galerkin Approximation

3.1 Daubechies Compactly Supported Wavelets. The
Daubechies wavelets and associated scaling functions 	 j,k�t� are
obtained by translation and dilation of functions 
�t� and 	�t�,
respectively.


J,k�t� = 2J/2
�2Jt − k� J,k � Z �8�

	J,k�t� = 2J/2	�2Jt − k� J,k � Z �9�

where J is the resolution. The scaling function 	�t� and wavelet
function 
�t� can be derived from the dilation equation as

	�t� = �
k

ak	�2t − k� �10�


�t� = �
k

�− 1�ka1−k	�2t − k� �11�

where ak ,a1−k are the filter coefficients and they are fixed for
specific wavelet or scaling function basis. It is noted that only a
finite number of ak ,a1−k are nonzero for compactly supported
wavelets.

The scaling function 	�t� and wavelet function 
�t� have the
following properties:

�
−�

�

	�t�dt = 1 �12�

�
−�

�

	�t − j�	�t − k�dt = � j,k j,k � Z �13�

Fig. 1 The vehicle-bridge system
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�
−�

�

tm
�t�dt = 0 m = 0,1, . . . ,L/2 − 1 �14�

where m denotes the number of vanish moments and L is the order
of Daubechies wavelet with L=2m.

The translation of the scaling and wavelet functions on each
fixed scale forms the orthogonal subspaces,

VJ = 	2J/2	�2Jt − k�, J � Z
 �15�

WJ = 	2J/2
�2Jt − k�, J � Z
 �16�

such that VJ forms a sequence of embedded subspaces,

	0
, . . . , � V−1 � V0 � V1, . . . , � L2�R� and VJ+1 = VJ � WJ

�17�

where � is the operator for the addition of two subspaces. At a
certain resolution J, the approximation of a function f�t� in L2�R�
space using 	J,k�t� as basis can be denoted as

PJ�f� = �
k

�̃J,k	J,k�t� J,k � Z �18�

where PJ�f� is the approximation of f�t� and �̃J,k is the approxi-
mation coefficient. Let QJ�f� be the detail of the function using

J,k�t� as basis at the same level J, and

QJ�f� = �
k

�̃J,k
J,k�t� J,k � Z �19�

where �̃J,k is the detail coefficient. The approximation PJ+1�f� of
the next level �J+1� of resolution is given by

PJ+1�f� = PJ�f� + QJ�f� �20�

This forms the basis of multiresolution analysis associated with
wavelet approximation.

3.2 Signal Decomposition Using Wavelet-Based Method.
The Wavelet–Galerkin approximation to the signal f�t� at a certain
resolution J can be expressed as

h�t� = �
k

�̃J,k2
J/2	�2Jt − k� J,k � Z �21�

from Eqs. �8� and �18�. Substituting y=2Jt into Eq. �21�, we ob-
tain

h�y� = �
k

�J,k	�y − k� �J,k = 2J/2�̃J,k J,k � Z �22�

If y takes up only integer values, the approximation is dis-
cretized at all dyadic points with t=2−Jy as

h�i� = h�i�y� = hi i = 0,1,2, . . . ,NT �23�

where NT is the number of time instances. Equation �22� can be
rewritten as

hi = �
k

�k	i−k = �
k

�i−k	k �24�

with 	k=	�k�. In matrix form, this becomes

�
h1

h2

h3

]

]

]

]

hNT−I

� = �
0 0 0 ¯ 	L−2 ¯ 	2 	1

	1 0 0 ¯ 0 ¯ 	3 	2

	2 	1 0 ¯ 0 ¯ 	4 	3

] ¯ ¯ ¯ ¯ ¯ ¯ ]

	L−2 	L−3 	L−4 ¯ ¯ ¯ 0 0

0 	L−2 	L−3 ¯ ¯ ¯ 0 0

] ¯ ¯ ¯ ¯ ¯ ¯ ]

0 0 0 ¯ 	L−3 ¯ 	1 0

�
��

�1

�2

�3

]

]

]

]

�NT−1

� �25�

The periodic boundary condition has been included in Eq. �25�
for the finite domain analysis denoted as

�
�−1 = �NT−1

�−2 = �NT−3

]

�−L+2 = �NT−L+2

� and �
�NT

= �0

�NT+1 = �1

]

�NT+L−2 = �L−2

� �26�

4 Moving Forces and Prestress Identification

4.1 Identification Theory. Employ the Wavelet–Galerkin ap-
proximation to the ith nodal displacement Ri�t� and jth moving
force Pj�t� in Eq. �3�. The expression is similar to that in Eq. �21�
as

Ri�t� = �
k

di,k	�2Jt − k� i = 1,2, . . . ,n �27�

Pj�t� = �
k

gj,k	�2Jt − k� j = 1,2, . . . ,NP �28�

where di,k and gj,k are the approximation coefficients for the ith
nodal displacement and jth moving force, respectively. The ith
nodal velocity and acceleration can be obtained from Eq. �27� as

Ṙi�t� = �
k

di,k	̇�2Jt − k� i = 1,2, . . . ,n �29�

R̈i�t� = �
k

di,k	̈�2Jt − k� i = 1,2, . . . ,n �30�

In the identification with the prestressed beam model, Eq. �7� is
substituted into Eq. �3� to get

MbR̈ + ��Mb + �Kb�Ṙ + KbR = ��Kg�Ṙ + Kg�R Hb��PN

P
� �31�

where Kg= PNKg�. Further, substitute Eqs. �27�–�30� into Eq. �31�
and let y=2Jt. Taking the inner product of both sides of Eq. �31�
with 	�y− j� and employing the orthogonal property in Eq. �13�,
we have
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Mb22J��2�
+ ��Mb + �Kb�2J��1�

+ Kb�d1,k

]

dN,k
�

= ��Kg���1�
+ Kg��d1,k

]

dN,k
�Hb��

PN

g1,k

]

gNP,k

� �32�

where

��1�
=� �

k=j−L+2

j+L−2

d1,kk−j
1

]

�
k=j−L+2

j+L−2

dN,kk−j
1 �; ��2�

=� �
k=j−L+2

j+L−2

d1,kk−j
2

]

�
k=j−L+2

j+L−2

dN,kk−j
2 �

and k−j
1 and k−j

2 are the first and second connection coefficients,
respectively, which can be expressed as

k−j
1 =� 	̇�y − k�	�y − j�dy �33�

k−j
2 =� 	̈�y − k�	�y − j�dy �34�

It should be noted that the solution of Eq. �32� needs to com-
pute the inverse of the system matrices at each time step, which is
more computational economical when compared with existing
methods, which need to have the inversion of matrices including
all time steps in the whole time duration of moving load identifi-
cation.

4.2 Identification Procedure. Any of the measured accelera-
tion, velocity, or strain can be used for the identification. The
deflection of the bridge at position x and time t can be expressed
as

w�x,t� = H�x�R�t� �35�

where H�x�= 	0¯Hi�x�T 0¯0
 with �i−1�l�x�t�� il. H�x� is a
1�n vector with zero entries except at the degrees of freedom
corresponding to the nodal displacements of the ith beam element
in which x is located. The components of the vector Hi�x� are
calculated similar to Eq. �5� with x�t� replacing xj�t�. Thus, the
acceleration of bridge at position x and time t can be expressed as

ẅ�x,t� = H�x�R̈�t� �36�

Also, the strain at a point x and time t can be written as follows:

��x,t� = − z
�2w�x,t�

�x2 = − z
�2H�x�R�t�

�x2 �37�

where z represents the distance from the neutral axis of the beam
to the strain gauge.

The wavelet coefficients di,k of the ith nodal displacement can
be obtained from any of Eqs. �35�–�37�. Equation �32� is utilized
to obtain the wavelet coefficients gj,k of the loads and PN, and the
moving forces can be reconstructed from Eq. �25�. The complete
sequence of the identification process is as follows:

Step 1. Calculate the system matrices in Eq. �1� for the vehicle
and the bridge as well as the geometric matrix for the prestressing
force.

Step 2. Select a Daubechies compactly supported wavelet such
as D6, D8, etc. Choose a resolution J and compute the first and
second order connection coefficients k−j

1 and k−j
2 from Eqs. �33�

and �34�.

Step 3. Obtain the wavelet coefficients di,k from the measured
acceleration or strain response.

Step 4. The wavelet coefficients of the forces gj,k are calculated
from Eq. �32�, and the moving force signals can be identified by
reconstructing according to Eq. �25�. The prestressing force can be
directly identified from Eq. �32�.

5 Regularization
The wavelet coefficients of the forces gj,k, obtained from Eq.

�32� using a straightforward least-squares method, would be un-
bound. A regularization technique �17� can be used to solve the
ill-posed problem in the form of minimizing the function

��P,�� = �BP − U�2 + ��P�2 �38�

where matrices U, B, and P represent the left-hand side of Eq.
�32�, and the first and second matrices on the right-hand side of
the equation, respectively. � is a non-negative regularization pa-
rameter corresponding to the smallest relative percentage error
calculated from Eq. �40�. The S-curve method can be employed to
determine the optimal parameter.

The solution of Eq. �38� is obtained by the damped least-
squares method as

P = �BTB + �I�−1BTU �39�

where I is the identity matrix and singular-value decomposition is
used in the pseudoinverse calculation.

6 Numerical Simulation
The effects of noise level, road surface roughness, sampling

rate related to the wavelet resolution, and the arrangement of sen-
sors on the accuracy of the identified results are investigated. The
improved reduced system method �5� is employed for model re-
duction and the number of master degree of freedoms is always
equal to the number of measuring points in the study.

White noise is added to the calculated responses to simulate the
polluted measurements as

�i = �ic�1 + EpNoise�

where �i and �ic are the vectors of measured and calculated re-
sponses at the ith measuring point, Ep is the noise level, and Noise
is a standard normal distribution vector with zero mean and unit
standard deviation.

Table 1 Parameters of the bridge-vehicle systems

Prestressed bridge Vehiclea

L=30 m Iv=1.47�105 kg m2 mv=17,735 kg
E=2.5�1010 N /m2 a1=0.519 a2=0.481
�A=5.0�103 kg /m m1=1500 kg m2=1000 kg
h0=1.0 m; b=0.6 m ks1=2.47�106 N /m ks2=4.23�106 N /m
f1=1.03 Hz; f2=4.75 Hz kt1=3.74�106 N /m kt2=4.60�106 N /m
f3=10.11 Hz cs1=3.00�104 N /m s cs2=4.00�104 N /m s
�=0.02 for all modes ct1=3.90�103 N /m s ct2=4.30�103 N /m s
PN=8.2247�106 N S=4.27 m

aReference �5�.

Table 2 Sensor arrangements

No. of sensors Location

Ns=4 1 /8L,3 /8L,5 /8L,7 /8L
Ns=6 1 /8L,1 /4L,3 /8L,1 /2L,5 /8L,3 /4L
Ns=7 1 /8L,1 /4L,3 /8L,1 /2L,5 /8L,3 /4L,7 /8L
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The relative percentage error �RPE� in the identified results is
calculated from Eq. �40�, where �·� is the norm of matrix, and
Pidentified and Ptrue are the identified and the true force time histo-
ries, respectively.

RPE =
�Pidentified − Ptrue�

�Ptrue�
� 100% �40�

Velocity of the vehicle is 30 m /s, and parameters of the vehicle
and the prestressed beam are given in Table 1.

The measuring points are located at the bottom of the beam and
their locations are shown in Table 2 for different arrangements of
sensors. Only displacement response is used in the study. The
polluted response is “denoised” using standard command in MAT-

LAB before the identification. Eight finite beam elements for the
bridge model are used, as previous research indicates that dis-
cretized into eight elements would be sufficient for accurate iden-
tification in a straight bridge deck.

6.1 Effect of Wavelet Resolution. The effect of resolution of
the wavelet analysis on the identification of the forces is studied.
The resolution J is related to the sampling time interval �t as
�t=T / �NT−1� and NT=T�2J, where T is the total time interval
for the vehicle to travel across the bridge deck and NT is the
number of total time instances round to the nearest integer. Reso-
lution J varies from 5 to 11 with the corresponding sampling rate
varies from 25 to 211. Seven sensors as listed in Table 2 are used
in the identification. The error of identification as calculated from
Eq. �40� for the cases with and without noise and with Class C
road roughness �18� included in the analysis is listed in Table 3.

The case with J=5 is less accurate with larger error, and the
error decreases, in general, with increase in the wavelet resolution
up to J=8 where the error of identification is relatively stable for
J=8 and larger. The effect of 5% noise and road roughness is
similar with insignificant decrease in the error of identification
with increase in the resolution, while the effect of noise is similar
to the road surface roughness. The error with the prestressing
force is very large for the whole range of resolution studied. How-
ever, inspection of Fig. 2 shows that the identified moving force
time histories vary around the true time histories except in the
short duration after the entry and before the exit of the vehicle.
The identified prestressing force in Fig. 3 is also very accurate
fluctuating slightly around the true value in the latter halve of the
time duration and with large fluctuations in the first 0.3 s of the
time duration. This contributes to most of the error of identifica-
tion. Therefore, values in Table 3 should be taken cautiously and
reference to the identified time histories is always necessary.

6.2 Effect of Sensor Arrangements. The wavelet resolution
is selected as J=10, and the three sensor arrangements as listed in
Table 2 are used for the identification, and the identified results for
the cases with and without noise and with Class C road surface
roughness are listed in Table 4. The first and third sensor arrange-
ments are symmetrical about the midspan while the second ar-
rangement has more sensors on one half of the beam. The error of

identification is shown in Table 4 and the identified force time
histories and the prestressed force time history are shown in Figs.
4 and 5.

The error of identification clearly shows a larger value for the
nonsymmetric sensor arrangement while the two symmetric ar-
rangements give similar error of identification. Four sensors are
checked to give acceptable force time histories, as shown in Fig. 4
and Table 4. Results not shown also indicate that a less fine res-

Table 3 Percentage error of identified forces from different sampling rate and resolution
„Ns=7…. Note that * denotes exceptional large error.

Wavelet
resolution

Without noises With Class C road roughness With noise �5%�

Axle 1 Axle 2 PN Axle 1 Axle 2 PN Axle 1 Axle 2 PN

J=11 23.1 12.3 *91.5 21.8 11.5 *95.1 23.1 25.3 *91.5
J=10 23.1 14.2 *81.8 21.8 13.9 *81.3 23.1 25.4 *81.8
J=8 21.3 16.7 *64.7 21.3 16.2 *64.3 21.5 17.1 *64.8
J=7 28.6 24.5 *52.7 29.8 24.6 *52.8 28.7 26.5 *53.7
J=6 35.4 32.1 *49.8 35.1 32 *49.9 37.3 34.5 *56.3
J=5 *49.5 *46.3 *46.8 *49.1 *46.2 *46.8 *53.4 *47.4 *71

Fig. 2 Identified moving forces with 5% noise and different
resolutions „—true, ---- J=8, -.-.-.-J=10, ……J=11…

Fig. 3 Identified prestress force with 5% noise and different
resolutions „—true…
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olution of J=8 gives similar accuracy in the force time histories
indicating that a higher resolution does not necessarily give more
accurate results.

The identified force time histories are very close to the true
value, and the case with seven sensors could have very good
identified prestressing force identified in the latter halve of the
time duration, as shown in Fig. 5.

7 Discussions
This method does not require an assumption on the initial con-

dition of the system as only the responses are transformed into
wavelet space and the periodic boundary condition has been in-

cluded in such transformation, as seen in Eq. �26�. Since only the
wavelet coefficient of the displacement response di,k is required in
the identification equation, any one of Eqs. �35�–�37� can give
these coefficients and thus this method has no restriction on the
type of measured response for the identification. Results not
shown indicate that the accuracy of identification is larger when
only the moving forces are identified instead of having both types
of forces identified simultaneously. This may be due to the differ-
ent sensitivities of the two types of forces in the same identifica-
tion giving rise to a larger error.

8 Conclusions
A new method of moving load and prestress identification is

developed using the wavelet-based method in which the approxi-
mation of the measured response is used to form the identification
equation. This method is for general system identification making
use of any types of measured dynamic responses and no assump-
tion is needed on the initial condition of the system. Simulation
study with and without measurement noise and with road surface
roughness gives acceptable results with different wavelet resolu-
tions. The error of identification is largest in the identified time
histories in the short duration after the entry and before the exit of
the vehicle, while accurate results can be obtained in most of the
time duration with a proper selection of wavelet resolution and
sensor arrangement.
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Appendix: System Matrices of Vehicle and the Interac-
tion Forces

MV1 = �mv 0

0 Iv
� MV2 = �m1 0

0 m2
�

CV11 = � Cs1 + Cs2 �− Cs1a1 + Cs2a2��S
�− Cs1a1 + Cs2a2�S �Cs1a1

2 + Cs2a2
2�S2 �

CV12 = � − Cs1 − Cs2

Cs1a1S − Cs2a2S
� CV21 = �− Cs1 Cs1a1S

− Cs2 − Cs2a2S
�

CV22 = �Cs1 0

0 Cs2
�

KV11 = � Ks1 + Ks2 �− Ks1a1 + Ks2a2�S
�− Ks1a1 + Ks2a2�S �Ks1a1

2 + Ks2a2
2�S2 �

KV12 = � − Ks1 − Ks2

Ks1a1S − Ks2a2S
�

KV21 = �− Ks1 Ks1a1S

− Ks2 − Ks2a2S
� KV22 = �Ks1 0

0 Ks2
�

Table 4 Percentage error of identified forces for different sensor arrangement „J=10…

No. of
sensors

Without noises With Class C road roughness With noise �5%�

Axle 1 Axle 2 PN Axle 1 Axle 2 PN Axle 1 Axle 2 PN

Ns=7 23.1 14.2 81.8 21.8 13.9 81.3 23.1 25.4 81.8
Ns=6 29.5 24.1 69.9 28.9 23.9 69.3 28.4 29.8 85.8
Ns=4 26.7 30.4 67.9 26.6 29.9 68.2 29.8 33.3 87.2

Fig. 4 Identified moving forces on the prestressed bridge from
different sensor arrangements with 5% noise and J=10 „—true,
---- Ns=4, -.-.-.- Ns=6, …. Ns=7…

Fig. 5 Identified prestress force from different sensor arrange-
ments and 5% noise with J=10 „—true…
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P = �P1�t�
P2�t� � P0 = ��m1 + a2mv�g

�m2 + a1mv�g�
where S is the axle spacing, 	Ksi ,Csl , �i=1,2�
 are the stiffness
and the damping of the two suspensions, mv and Iv are the mass
and the mass moment of inertia of the vehicle, and m1 and m2 are
the masses of the bogie. a1 and a2 denote the dimensions of the
vehicle, as given in Fig. 1.

References
�1� Cebon, D., 1987, “Assessment of the Dynamic Wheel Forces Generated by

Heavy Road Vehicles,” Symposium on Heavy Vehicle Suspension and Charac-
teristics, Australian Road Research Board.

�2� Zhu, X. Q., and Law, S. S., 2002, “Dynamic Load on Continuous Multi-Lane
Bridge Deck From Moving Vehicles,” J. Sound Vib., 251�4�, pp. 697–716.

�3� Jiang, R. J., Au, F. T. K., and Cheung, Y. K., 2004, “Identification of Vehicles
Moving on Continuous Bridges With Rough Surface,” J. Sound Vib., 274�3–
5�, pp. 1045–1063.

�4� Law, S. S., and Fang, Y. L., 2001, “Moving Force Identification: Optimal State
Estimation Approach,” J. Sound Vib., 239�2�, pp. 233–254.

�5� Law, S. S., Bu, J. Q., Zhu, X. Q., and Chan, S. L., 2004, “Vehicle Axle Loads
Identification on Bridges Using Finite Element Method,” Eng. Struct., 26�8�,
pp. 1143–1153.

�6� Zhu, X. Q., and Law, S. S., 2002, “Practical Aspects in Moving Force Identi-
fication,” J. Sound Vib., 258�1�, pp. 123–146.

�7� Lu, Z. R., and Law, S. S., 2006, “Identification of Prestress Force From Mea-
sured Structural Responses,” Mech. Syst. Signal Process., 20�8�, pp. 2186–
2199.

�8� Law, S. S., and Lu, Z. R., 2005, “Time Domain Responses of a Prestressed
Beam and Prestress Identification,” J. Sound Vib., 288�4–5�, pp. 1011–1025.

�9� Amaratunga, K., Williams, J. R., Qian, S., and Weiss, J., 1992, Wavelet-
Galerkin Solutions for One Dimensional Partial Differential Equations,
Aware, Cambridge.

�10� Latto, A., Resnikoff, H., and Tenenbaum, E., 1992, “The Evaluation of Con-
nection Coefficients of Compactly Supported Wavelets,” Proceedings of the
French-USA Workshop on Wavelets and Turbulence, Springer-Verlag, New
York.

�11� Ghanem, R., and Romeo, F., 2000, “A Wavelet Based Approach for the Iden-
tification of Linear Time-Varying Dynamical Systems,” J. Sound Vib., 234�4�,
pp. 555–576.

�12� Mitra, M., and Gopalakrishnan, S., 2005, “Spectrally Formulated Wavelet Fi-
nite Element for Wave Propagation and Impact Force Identification in Connect
1-D Waveguides,” Int. J. Solids Struct., 42, pp. 4695–4721.

�13� Sone, A., Hata, H., and Masuda, A., 2004, “Identification of Structural Param-
eters Using the Wavelet Transform of Acceleration Measurements,” ASME J.
Pressure Vessel Technol., 126, pp. 128–133.

�14� Zabel, V., 2005, “An Application of Discrete Wavelet Analysis and Connection
Coefficients to Parametric System Identification,” Struct. Health Monit., 4�1�,
pp. 5–18.

�15� Yan, B. F., Miyamoto, A., and Bruhwiler, E., 2006, “Wavelet Transform-Based
Modal Parameter Identification Considering Uncertainty,” J. Sound Vib.,
291�1–2�, pp. 285–301.

�16� Zhu, X. Q., and Law, S. S., 2006, “Wavelet-Based Crack Identification of
Bridge Beam From Operational Deflection Time History,” Int. J. Solids
Struct., 43, pp. 2299–2317.

�17� Law, S. S., Chan, T. H. T., Zhu, X. Q., and Zeng, Q. H., 2001, “Regularization
in Moving Force Identification,” J. Eng. Mech., 127�2�, pp. 136–148.

�18� “Mechanical Vibration—Road Surface Profiles—Reporting of Measured
Data,” ISO 8606:1995�E�.

Journal of Applied Mechanics MARCH 2008, Vol. 75 / 021014-7

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Sachin Jain
Former Graduate Student

e-mail: jainsachin11@gmail.com

Durgesh C. Rai1

Associate Professor
e-mail: dcrai@iitk.ac.in

Dipti R. Sahoo
Doctoral Scholar

e-mail: diptirs@iitk.ac.in

Department of Civil Engineering,
Indian Institute of Technology Kanpur,

Kanpur 208 016, India

Postyield Cyclic Buckling Criteria
for Aluminum Shear Panels
Aluminum shear panels can dissipate significant amount of energy through hysteresis
provided strength deterioration due to buckling is avoided. A detailed experimental study
of the inelastic behavior of the full-scale models of shear panels of 6063-O and 1100-O
alloys of aluminum is conducted under slow cyclic loading of increasing displacement
levels. The geometric parameters that determine buckling of the shear panels, such as
web depth-to-thickness ratio, aspect ratio of panels, and number of panels, were varied
among the specimens. Test results were used to predict the onset of buckling with pro-
portionality factor f in Gerard’s formulation of inelastic buckling. Moreover, a logarith-
mic relationship between buckling stress and slenderness ratio of the panel was observed
to predict experimental data closely. These relations can be further used to determine the
geometry of shear panels, which will limit the inelastic web buckling at design shear
strains. �DOI: 10.1115/1.2793135�

Keywords: buckling, shear, aluminum, inelastic, cyclic, postyield

Introduction
Shear panels of soft alloys of aluminum can be effectively used

as a device to dissipate energy through hysteresis for a number of
engineering applications. One such application is in the area of
earthquake resistant design of structures where these devices are
used as a means to dissipate seismic energy and control the seis-
mic response of the structure. With thick webs of shear panels of
aluminum alloys of low yield values, not only the problem of
elastic buckling is avoided but the onset of inelastic buckling can
be delayed even past the yielding. Postyield buckling of panels
seriously limits their energy dissipation potential with severe
pinching of hysteretic loops. Therefore, shear panels are to be
designed to avoid buckling at operating shear strains for various
applications �1,2�. The purpose of this study is to experimentally
investigate the buckling behavior of aluminum shear panels of
low slenderness ratio which buckle after yielding and to develop a
criterion for postyield shear buckling of such shear panels.

Inelastic Shear Buckling Stress
The plastic buckling analysis has been attempted using the clas-

sical theories of plasticity, which involved the incremental �or
flow� and/or the deformation theory of plasticity �3–6�. The solu-
tions for simple cases of plate problems for uniaxial and biaxial
monotonic loading have been derived. Azhari and Bradford �7�
employed both deformation and flow theory in the complex finite
strip eigenvalue method for plastic buckling of plates. However,
these analytical studies are too complex and computationally in-
tensive making them difficult to use for design purposes. The
objective of this study is to provide simple expressions for cyclic
plastic buckling of aluminum shear panels based on experimental
investigation.

For stresses beyond the proportional limit, the critical buckling
stresses by elastic theory �e.g., Euler theory� give exaggerated
values. In order to get satisfactory results, the behavior of the
material beyond the proportional limit must be considered. At
these higher stresses, the modulus of elasticity, or slope of the
stress-strain curve, varies depending on the strain level and can be

represented by the tangent modulus of elasticity Et. Substituting
Et for Young’s modulus, E in Euler’s buckling formula, inelastic
buckling stress �b can be given as follows �8�:

�b =
�2Et

�2 �1�

where � is the characteristic slenderness ratio. Assuming that the
edges are partially restrained against rotation for a panel of shorter
dimension, a, and longer dimension, b, characteristic slenderness
ratio can be given as per the following expression �9�:

� =
a

tw

� 1.6

1 + 0.7�a/b�2 �2�

Clark and Rolf �10� showed that rather than using tangent modu-
lus which varies with stress, Eq. �1� can be conveniently reduced
to a linear function of the equivalent slenderness ratio �, as shown
below:

�b = Bs − Ds� �3�

where Bs and Ds are the material parameters that depend on the
yield shear stress of the material. Sharp and Clark �9� summarized
the observed behavior of thin aluminum shear webs of plate gird-
ers under monotonic loading, which formed the basis of design
provisions of the Aluminum Association �11�. However, this rela-
tion does not provide good predictions of inelastic buckling stress
in the strain-hardening region.

Gerard �12� extended the concept of use of secant modulus �in
place of tangent modulus� in determining critical shear stresses
above the proportional limit and formulated the plastic web buck-
ling problem as follows:

�b = �����E �4�

where ���� is a plastic-reduction factor, which is related to poste-
lastic behavior of the plate, and �E is the elastic buckling stress.
Gerard proposed an empirical equation for � as a function of the
ratio of shear secant modulus Gs and shear modulus G of the shear
panel, i.e.,

� = f�Gs/G� �5�

where f is a proportionality constant to be determined from ex-
perimental data. These relations were developed for monotonic
loading; however, they can be extended for reversed cyclic load-
ing. Secant shear modulus Gs is now defined as Gs=�b / �̄b, where
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�b is the shear stress and �̄b is the shear strain, as shown in Fig. 1.
In this manner, Gerard’s approach for the inelastic buckling crite-
rion is explicitly expressed in terms of applied cyclic shear strain,
which can be directly used with deformation-based design provi-
sions for shear panels.

Kasai and Popov �13� tested various steel shear links employed
in eccentrically braced frames �EBFs� under reversed cyclic loads
and observed that the inelastic shear buckling stress can be ad-
equately represented by Gerard’s formulation with proportionality
factor f being 3.7. Similarly, in another study on cyclic load tests
on shear panel of low yield alloy of aluminum �3003-O�, Gerard’s
formulation for inelastic buckling was found in excellent agree-
ment with experimental results and the factor �f =3.76� was found
nearly constant for all the test specimens �14�. However, in this
preliminary study, all the specimens had identical geometry of
shear web panels and, therefore, the observed value of f needed to
be verified with a larger dataset of specimens of differing geom-
etries. The present paper revisits the earlier results with expanded
dataset of full-scale models of shear panels of different geometric
parameters.

Experimental Program

Test Specimens. The energy dissipation capacity of aluminum
shear panels depends on the mechanical properties of the material
to a great extent. A highly ductile material is needed to meet the
large inelastic strain demand required in these applications. Soft
alloys of aluminum are less susceptible to web buckling problems
because of their low yield strength, which enables the usage of
thicker webs for the same strength. Widely available Alloys 6063
and 1100 of aluminum for structural applications were used for
fabrication of I-shaped specimens with transverse stiffeners. This
alloy was chosen for its availability in flat sections of required
thickness. This material was not commercially available in the
fully soft annealed condition. Instead, a more common T6 temper
of 6063 alloy, which is solution heat treated and then artificially
aged, was obtained and annealed in the furnace. This annealing
process is believed to eliminate the history of prior straining
above a reference temperature �such as welding� and stress re-
lieves in the test specimens �15�. Annealing resulted in changing
the temper T6 to softer temper O, thus reducing the values of yield
stress and ultimate stress of the material. The specimens were
raised to a temperature of 413°C and kept at that temperature for
2 h. Then, they were allowed to cool gradually at a rate of

28°C per hour in the heat treating oven. However, no attempt was
made to assess the residual stress and its distribution in the speci-
mens before and after the annealing process in the present study.

Figure 2 shows the stress-strain behavior of unannealed and
annealed aluminum alloys used in the present study. The proof
stress for unannealed temper T6 corresponding to 0.2% of strain
was 240 MPa, which was reduced to 35 MPa after annealing. The
stress-strain curve unannealed tensile coupon tests result in a
curve with a sharp knee in contrast to more rounded with much
lower yield stress in the case of annealed coupons. Also, elonga-
tion of the coupons was increased from around 15% to 30% after
annealing �Table 1�. In addition to reduction in the yield stress,
effect of strain hardening of the material was more pronounced
due to annealing.

I sections of specimens were fabricated mainly using three alu-
minum strips—two separate strips for each of the flanges and one
strip for the web. The flanges were welded to the web from the
inside face of the flange using tungsten inert gas �TIG� welding
process �16�. Transverse stiffeners were employed in specimens to
delay the initiation of the web buckling and were rigid enough so
that inclined waves of the buckled plate do not run across the
stiffener. To maintain postbuckling capacities of shear panels,
each transverse stiffener is proportioned to avoid web buckling
with the stiffener and must remain effective even after the web
buckles to support the tension field as well as to prevent the ten-
dency of flange to move toward each other. The stiffeners were
groove welded to both flanges as well as to the web �Fig. 3�.

Nineteen specimens of panels �Specimen 1 as trial specimen�
with web thickness of 4.5 mm, 6.5 mm, and 7.6 mm were fabri-
cated with aspect ratios of 0.75, 1.00, and 1.25. For each combi-
nation of aspect ratio and web depth-to-thickness ratio, two-
paneled as well as three-paneled specimens were fabricated using
transverse stiffeners. The clear depth of web and width of flange
of all specimens were 152.4 mm and 100 mm, respectively �Fig.
3�. Similarly, the thickness of flange was 6.5 mm for specimens
with a web thickness of 4.5 mm and was increased to 10 mm for
specimens with thicker webs. The geometric properties of all test
specimens are summarized in Table 2. Since the flat sections of
required thickness for Specimens 14–19 were not available in

Fig. 1 Details of parameters used in Gerard’s buckling crite-
rion: „a… shear deformation of shear panel and „b… definition of
secant shear modulus Gs and inelastic shear strain �̄b

Fig. 2 Stress-strain curves of unannealed and annealed alumi-
num alloys used in this study

Table 1 Uniaxial tensile coupon test results

No. Alloy Condition
Percentage
elongation

Yield stress
�MPa�

Ultimate
stress �MPa�

1 6063-T6 Unannealed 15.26 240 261
2 6063-O Annealed 31.08 35 85
3 1100-O Unannealed 16.42 99 112
4 1100 Annealed 33.32 25 82
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Alloy 6063, plates of Alloy 1100-O were used. The material used
for flanges of test specimens was the same as that of the web. All
the test specimens were annealed before being used in the experi-
ment.

Test Setup. A testing system used in the study was designed, as
shown in Fig. 4. The load application system consisted of servo-
hydraulic closed loop actuator �MTS manufactured� with a force
capacity of �500 kN and a displacement stroke of �125 mm.
Loading was applied through a controller unit and a function gen-
erator that enabled the servocontrolled actuator to produce prepro-
gramed displacement histories. The lateral shear load was trans-
ferred from the actuator to the specimen through an I-shaped steel
beam, which moved back and forth with the actuator. The speci-
men was bolted securely to the bottom flange of the top beam. The
bottom flange of the specimen was bolted to the top flange of an
I-shaped steel beam at the bottom which was welded to a steel
plate, firmly held to the horizontal strong floor of the laboratory.
The lateral out-of-plane movement of the top movable beam was
restrained by providing side supports with ball bearings on both
sides of its web. This arrangement prevented out-of-plane move-
ment, bending or twisting. In order to prevent the movement of
the top beam in the vertical plane, roller bearings were provided
on the top flange of the top steel beam, as shown in Fig. 4. The
setup was so fabricated that the lateral shear load was applied at
the mid-depth level of the shear panel.

The instrumentation consisted of transducers, which included a
load cell, linear variable differential transformers �LVDTs�, and
strain gauges. A set of 45 deg-strain rosettes was used to measure
the shear strains at the center of the panel, which was also used to

determine the initial modulus of shear rigidity G of the material.
The measurement of force in the specimen was accomplished di-
rectly via a load cell located in the actuator arm. A pair of LVDTs
was diagonally mounted on either face of the specimen to measure
the shearing deformation of the web of specimen. An additional
LVDT was mounted on the loading beam to measure the horizon-
tal movement of the actuator.

Displacement History. As stated earlier, the objective of this
study is to investigate the force-deformation behavior of the shear
links under slow cyclic loading. Slow cyclic implies that load or
deformation cycles are imposed on a test specimen in a slow,
controlled, and predetermined manner, and dynamic effects as
well as rate of deformation effects are not considered �17�. Dis-
placement histories consisted of symmetric reversed cycles of in-
creasing displacements in predetermined steps at a frequency of
0.01 Hz in the ramp wave form in displacement controlled re-
gime. Cycles were performed at shear strain levels of �0.005,
�0.01, �0.02, �0.05, �0.10, �0.15, and �0.20. Shear strain is
calculated as the ratio of horizontal shear displacement of the
panel to the clear depth of web plate. The push displacement
applied by the actuator was taken as positive and the pull dis-
placement was considered as negative. Each displacement cycle
was repeated for three times, as shown in Fig. 5. Such loading
program is representative of low cycle fatigue caused by short
duration events, such as earthquakes, blasts, etc.

Fig. 3 Details of test specimens: „a… two-paneled specimen „b…
three-paneled specimen

Table 2 Geometric properties of all the specimens

Sp.
No. Alloya n

tw
�mm�

C
�mm� � �

lw
�mm�

Aw

�mm2�
ts

�mm�

1 6063-T6 2 6.5 190.5 1.25 23.5 397.0 2580.5 6.5
2 6063-T6 2 4.5 114.3 0.75 38.1 248.1 1116.45 6.5
3 6063-T6 2 4.5 152.4 1.00 38.1 324.3 1459.35 6.5
4 6063-T6 2 4.5 190.5 1.25 38.1 400.5 1802.25 6.5
5 6063-T6 3 4.5 114.3 0.75 38.1 368.9 1660.05 6.5
6 6063-T6 3 4.5 152.4 1.00 38.1 483.9 2177.55 6.5
7 6063-T6 3 4.5 190.5 1.25 38.1 597.5 2688.75 6.5
8 6063-T6 2 6.5 114.3 0.75 23.5 248.1 1612.65 6.5
9 6063-T6 2 6.5 152.4 1.00 23.5 324.3 2107.95 6.5

10 6063-T6 2 6.5 190.5 1.25 23.5 400.5 2603.25 6.5
11 6063-T6 3 6.5 114.3 0.75 23.5 368.9 2397.85 6.5
12 6063-T6 3 6.5 152.4 1.00 23.5 483.9 3145.35 6.5
13 6063-T6 3 6.5 190.5 1.25 23.5 597.5 3883.75 6.5
14 1100-O 2 7.6 114.3 0.75 20.0 252.6 1919.76 7.6
15 1100-O 2 7.6 152.4 1.00 20.0 328.8 2498.88 7.6
16 1100-O 2 7.6 190.5 1.25 20.0 411.0 3123.6 10.0
17 1100-O 3 7.6 114.3 0.75 20.0 374.9 2849.24 7.6
18 1100-O 3 7.6 152.4 1.00 20.0 489.2 3717.92 7.6
19 1100-O 3 7.6 190.5 1.25 20.0 611.5 4647.4 10.0

aAlloy specification for plates used to fabricate the test specimens, which were annealed before testing.

Fig. 4 Test setup with locations of LVDTs and strain gauges
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Discussion on Experimental Results
Figure 6 shows shear-stress–shear-strain hysteretic response of

two-paneled and three-paneled test specimens with varied alloy
type and web depth-to-thickness ratio up to a cyclic shear strain of
20%. Specimens made of 6063 alloy and web depth-to-thickness
ratio of 38.1 exhibited pinching of hysteretic loops due to inelastic
buckling, thereby reducing their energy dissipation capacity. Both
two-paneled and three-paneled test specimens made of 6063 alloy
and web depth-to-thickness ratio of 23.5 showed higher shear
strength due to noticeable strain-hardening behavior. However,
specimens using 1100 alloy did not exhibit significant strain-
hardening behavior. Most of the test specimens buckled at a shear
strain of 10% due to large web depth-to-thickness ratio and speci-
mens having smaller web depth-to-thickness ratio continued to
exhibit stable and full hysteretic loops without pinching at larger
strain levels without buckling. Table 3 summarizes the results of
experimental study of aluminum shear panels of all test speci-
mens.

Load-Deformation Behavior. Specimens 1–19 showed no ap-
parent distress in the panels at low levels of strain �0.005, 0.01,
0.02, and 0.05 strains�. Specimens 2, 3, 4, 6, and 7 showed onset
of buckling at a 0.10 strain level. The buckled configuration
caused pinched flanges at both ends of the specimens. The onset
of web buckling initiated the deterioration of the hysteric perfor-
mance. At the end of 0.10 strain cycles, substantial out-of-plane
web buckling was observed. During next cycle at 0.15 strain level,
rapid deterioration of the resistance to shear loading was ob-
served, which kept on accentuating with each additional cycle.
The end stiffeners were visibly distressed at this stage due to
excessive strains. The initiation of the web tearing was observed
in the web along the buckles and at the points where buckles
formed in either direction intersected. Extreme buckled shapes of
the specimens were observed at this stage at a strain level of 0.20
�Fig. 7�. Other specimens showed buckling at the higher strain
levels: 0.15 for Specimens 5, 13, and 19; 0.20 for Specimens 10
and 15; and 0.25 for Specimen 18. Further, Specimens 8, 9, 11,
12, 14, 16, and 17 had such a configuration that they did not
experience buckling up to 0.25 strain levels.

Effect of End Stiffeners. The tension field in a shear panel is
traditionally believed to be resisted by the flanges and transverse
stiffeners. However, a recent study shows that their role is rather
limited �18�. Since the panels adjacent to an interior panel of a
specimen having three panels are able to resist the tension field,
they can be counted on to furnish the necessary support. As the
end panel does not have such support, end stiffeners undergo large
bending while resisting the bending effects of tributary tension

field. The end stiffeners help in controlling the amplitude of web
buckling and thereby reduce the severity of resistance deteriora-
tion of the panel upon cycling. The end stiffeners appeared to be
much more bent due to tension field, while intermediate transverse
stiffeners do not show much bending.

Effect of Aspect Ratio �. The function of transverse stiffener
is to subdivide the panel web into smaller panels, thereby increas-
ing the shear buckling stress. The effect of providing stiffener is to
delay the onset of web buckling. Delaying the web buckling al-
lowed the webs to continue to strain harden and permitted the
specimens to reach higher stress level. The web of the aluminum
section was reinforced with transverse stiffeners to increase its
resistance to buckling. The onset of buckling in Specimen 6 ��
=1� was observed at a strain level of 0.1 while it was observed at
a strain level of 0.15 in Specimen 5 ��=0.75�. Similar observation
was made in Specimen 18 ��=1.0 and �b=0.25� and Specimen 19
��=1.25 and �b=0.15�. Hence, reduction in the spacing of trans-
verse stiffeners results into the lower value of aspect ratio � of the
panel, thus resulting in increase in web buckling deformation
angle �b.

Effect of Web Depth-to-Thickness Ratio �. For web depth-
to-thickness ratios of 23.5 and 20, some specimens such as Speci-
mens 8, 9, 11, 12, 14, and 17 showed no buckling at all even at
strains up to 0.20 or sometimes even completely avoiding web
buckling until the tearing of web plate. Specimen 4 having �
value as 38.1 buckled at 0.1 strain while Specimen 10 having �
value as 23.5 buckled at 0.2 strain, whereas Specimen 16 with �
value as 20 did not buckle until tearing of plate. Thus, as web
depth-to-thickness ratio is decreased, the tendency of buckling of
the panel is delayed to larger strain levels.

Effect of Number of Panels. In Specimen 5 �three paneled�,
larger buckling deformation angle �0.15 strain� was noticed as
compared to Specimen 2 �0.1 strain� having two panels while all
other parameters were the same. Similar behavior was noticed in
Specimen 18 ��b=0.25� and Specimen 15 ��b=0.2�. Thus, it can
be stated that three-paneled specimen buckled at large strain level
as compared to two-paneled specimen with other parameters re-
maining the same. Specimen 4 resisted 78.3 kN while correspond-
ing three-paneled Specimen 7 resisted 129.2 kN and similar ob-
servation was made in other specimens also. It is observed that the
ultimate load level achieved in three-paneled specimens is about
1.5 times the corresponding two-paneled specimens with other
parameters remaining constant. This may be due to the tension
field developed in the central panel resisted by the adjacent outer
panel web, which is not present in the case of two-paneled speci-
mens.

Criteria for Postyield Shear Buckling
Test results presented in Table 2 can be used to predict the

proportionality factor in Gerard’s formulation for the onset of in-
elastic buckling, as discussed earlier. On plotting the experimental
data as shown in Fig. 8, it is clear that the data points lie in a
“triangular” banded region with proportionality factor f ranging
from 3.0 to 7.0. This is primarily due to large variations in geo-
metric configuration of shear panels, especially due to two panels
versus three panels. It can be observed that the value of Gs /G of
Specimen 18 has been decreased as compared to Specimen 15 due
to an increase in the number of panels with other geometric pa-
rameters remaining the same. Similar reduction in Gs /G was ob-
served in Specimen 5 as compared to Specimen 2 due to an in-
crease in the strain level at the onset of buckling resulting in lower
value of Gs. Thus, the suggested range of values of f takes into
account the effect of number of panels into consideration as well.
However, for convenience, a best-fit line has been plotted for the
dataset, which suggests the value of f to be 4.92. Using this value,
strain at the onset of postyield buckling �b can be obtained as

Fig. 5 Displacement „or strain… history
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Table 3 Aluminum shear panel test results

Sp.
No. �

�E
�MPa�

�b
�MPa� �b

Gs
�MPa�

G
�MPa� Gs /G �b /�E f �̄b

1 21.7 1466.1 49.3 0.05 537.0 23,220a 0.023 0.034 1.454 0.09
2 26.9 953.2 53.0 0.10 353.3 21,860 0.016 0.056 3.440 0.15
3 32.7 644.5 49.4 0.10 329.3 21,720 0.015 0.077 5.055 0.15
4 35.2 555.4 39.3 0.10 262.1 23,220a 0.011 0.071 6.271 0.15
5 26.9 953.2 59.6 0.15 238.4 23,060 0.010 0.063 6.048 0.25
6 32.7 644.5 51.4 0.10 342.4 24,220 0.014 0.080 5.637 0.15
7 35.2 555.4 48.1 0.10 320.7 25,220 0.013 0.087 6.811 0.15
8 16.5 2516.5 b b b 24,260 b b b b

9 20.1 1701.3 b b b 27,200 b b b b

10 21.7 1466.1 74.3 0.20 212.2 23,200 0.009 0.051 5.539 0.30
11 16.5 2516.5 b b b 21,187 b b b b

12 20.1 1701.3 b b b 23,220a b b b b

13 21.1 1466.1 79.4 0.15 317.6 20,274 0.016 0.054 3.457 0.25
14 14.1 3459.3 b b b 31,480 b b b b

15 17.2 2338.9 56.8 0.20 162.3 21,220 0.008 0.024 3.175 0.2
16 18.5 2015.5 b b b 28,640a b b b b

17 14.1 3459.3 b b b 29,544 b b b b

18 17.2 2338.9 58.9 0.25 131.0 32,340 0.004 0.025 6.222 0.25
19 18.5 2015.5 55.0 0.15 157.2 28,640a 0.005 0.027 4.974 0.25

aAverage value of shear modulus considered because of erratic strain gauge data.
bNo incident of buckling.

Fig. 6 Hysteretic response and buckled configurations of test specimens with varied
number of panels, type of alloy, and web width-to-thickness ratio
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�b = 4.92
�E

G
�6�

Elastic critical stress is given by �19�

�E = ks
�2E

12�1 − 	2�� 1

�
�2

�7�

where E is Young’s modulus, 	 is Poisson’s ratio, and ks is the
buckling coefficient, which depends on aspect ratio of the web
subpanel formed by the transverse stiffeners and its boundary re-
straint conditions. It is reasonable to assume clamped edge condi-
tions for the web panel, as the stiffeners welded to the web and the
flanges provide significant restraint to the web. For finite rectan-
gular plate with clamped edges �19�,

ks = �5.6 +
8.98

�2 for � 
 1

8.98 +
5.6

�2 for � � 1	 �8�

Comparing Eq. �7� to Eq. �1� and using the values of ks as given
in Eq. �8�, the slenderness ratio � can be expressed as follows:

� =���� 1.2

1 + 0.63�2
for � 
 1

�� 1.2

1 + �0.63/�2�
for � � 1	 �9�

Using Eq. �1� for �E by taking Et=E and value of Poisson’s ratio
	 as 0.33 in Eq. �6�, the web buckling deformation angle �b can be
expressed as a function of slenderness ratio � of Eq. �9� as fol-
lows:

�b =
129.17

�2 �10�

Equation �10� can be used to determine the spacing of transverse
stiffeners to avoid web buckling by taking equal �b to an expected
peak-to-peak web deformation angle for fully reversed cycles of
loading shown in Fig. 5.

A linear relationship was observed in the log-log plot between
slenderness ratio � of Eq. �9� and ratio of inelastic buckling shear
stress �b to shear yield stress �y, as shown in Fig. 9. Shear yield
stress �y can be defined as 0.6 times of yield stress of material,
�0.2 �i.e., stress corresponding to a proof strain of 0.2%�. Hence,
the shear buckling stress �b of aluminum panel in the region be-
yond the yield limit can be expressed in terms of its slenderness
ratio � as follows:

�b

�y
=

47.5

�0.87 �11�

Shear buckling curve of aluminum panels obtained using Eq. �11�
is compared with Euler’s elastic curve, curves proposed by Gerard
�12�, and the Aluminum Association �11�, as shown in Fig. 10.
Two buckling curves as per Gerard’s formulation correspond to
the minimum and maximum observed values of Gs /G and 0.15,
respectively �Table 3�. Gerard’s buckling curve clearly gives the
lower bound value of inelastic shear buckling stress. The inelastic
buckling curve proposed by the Aluminum Association �11� lies
well below the experimental prediction; however, it matched with
Euler’s elastic buckling curve at higher slenderness ratio. The pro-
posed postyield buckling curve as given by Eq. �11� lies within
Gerard’s buckling band and hence, the prediction of inelastic
shear buckling stress for panels of low slenderness ratio is quite
reasonable. However, further investigation is needed to justify the
validity of the proposed expression in the intermediate region for
shear panels of medium slenderness.

Figure 11 shows an array describing � and � values for panels
which buckled at a strain level of 0.15. The region without hatch-
ing is the zone in which no buckling took place. Thus, by taking
the values of � and � for shear panels in this zone, the postyield
buckling can be completely avoided for the specified strain of
0.15.

Fig. 7 State of test specimens before and after the testing: „a…
two paneled specimen and „b… three-paneled specimen

Fig. 8 Experimental relationship between Gs /G and �

Fig. 9 Log-log plot between slenderness ratio and inelastic
shear buckling stress
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Conclusions
This paper presents the basic information on strength and stiff-

ness characteristics, deformation capacities, cyclic strain-
hardening effects, and deterioration behavior at large deformations
of aluminum shear panels subjected low cycle fatigue, typically
associated with extreme events of short duration, such as earth-
quakes, blast, etc., which are less repetitive at a constant magni-
tude. The specimens showed very ductile behavior and excellent
energy dissipation potential with stable and full hysteric loops
without pinching with shear strains up to 0.20. The deleterious
effects of web buckling beyond yield limit can be controlled by
reducing the spacing between the transverse stiffeners and thus
delaying the onset of web buckling to larger strain levels. As web
depth-to-thickness ratio is decreased, the tendency of buckling of
the panel is significantly delayed to larger strain levels even until
the tearing of web plate.

Experimental study revealed that the proportionality factor f in
Gerard’s formulation varied from 3.0 to 7.0 for shear panels of
low slenderness ratio and differing geometries. An expression
connecting the web buckling deformation angle �̄b and the web
panel aspect ratio � and the web panel depth-to-thickness ratio �
was determined experimentally. It can be used to determine the
spacing of transverse stiffeners to avoid web buckling of shear
panels. A linear relationship between the ratios of inelastic buck-
ling stress with slenderness ratio of the panel was also established
in the log-log plot. A zone of aspect ratio � and web depth-to-

thickness ratio � has been identified in which postyield buckling
of aluminum shear panels can be completely avoided.
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Nomenclature
Aw  area of web

Bs, Ds  material parameters defined by Aluminum
Association

a  shorter dimension of panel
b  longer dimension of panel
C  clear spacing of stiffeners

dw  clear depth of web
E  Young’s modulus
Et  tangent modulus
f  proportionality constant as defined in Gerard’s

formulation
G  shear modulus

Gs  shear secant modulus
ks  buckling coefficient
lw  length of web
n  number of panels

tw  thickness of web
ts  thickness of stiffeners
V  lateral load
�  ratio of stiffener spacing to clear depth of web
�  web depth-to-thickness ratio
�  lateral displacement
�  plastic-reduction factor
�  characteristic slenderness ratio
�  shear stress
�  elastic shear strain

�b  inelastic cyclic shear strain at buckling
�̄b  inelastic cyclic shear strain at buckling in Ger-

ard’s buckling criterion
�0.2  proof stress corresponding to 0.2% strain

�b  inelastic buckling stress
�E  elastic buckling stress
�y  yield shear stress
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Bifurcations of Equilibria in
Potential Systems at Bimodal
Critical Points
Bifurcations of equilibria at bimodal branching points in potential systems are investi-
gated. General formulas describing postbuckling paths and conditions for their stability
are derived in terms of the original potential energy. Formulas describing unfolding of
bimodal branching points due to a change of system parameters are given. A full list of
possible cases for postbuckling paths, their stability, and unfolding depending on three
system coefficients is presented. In order to calculate these coefficients, one needs the
derivatives of the potential energy and eigenvectors of the linearized problem taken at the
bifurcation point. The presented theory is illustrated by a mechanical example on stability
and postbuckling behavior of an articulated elastic column having four degrees of free-
dom and depending on three problem parameters (stiffness coefficients at the hinges). For
some of the bimodal critical points, numerical results are obtained illustrating influence
of parameters on postbuckling paths, their stability, and unfolding. A surprising phenom-
enon that a symmetric bimodal column loaded by an axial force can buckle with a stable
asymmetric mode is recognized. An example with a constrained sum of the stiffnesses of
the articulated column shows that the maximum critical load (optimal design) is attained
at the bimodal point. �DOI: 10.1115/1.2793136�

1 Introduction
This paper is devoted to analysis of bimodal branching points

of stable trivial equilibrium in multiple degrees-of-freedom poten-
tial systems with the symmetry. These points were studied in a
number of books and papers �1–5�. In the books �1,2�, a rather
general method how to analyze postbuckling paths and their sta-
bility is presented. This method involves diagonalization proce-
dure of the potential energy and elimination of passive coordi-
nates, i.e., some transformations of the original potential energy
are needed. References �3,4� deal with the unfolding of bimodal
branching points of general two degrees-of-freedom systems with
symmetry. The bimodal critical points and their unfolding for two
degrees-of-freedom systems with double symmetry were studied
in Chap. X of the well-known book �5� on bifurcation theory.
However, in these works, the full list of possible bifurcations was
not given.

Some early examples on bimodal critical points were presented
in Refs. �6–8�. It turns out that bimodal branching points are
closely related to structural optimization problems �1�. Bimodal
optimal columns �in continuous formulation� were recognized in
Ref. �9�. Since that time, bi- and multimodality �multiplicity of
eigenmodes at the same critical load� became a popular topic in
structural optimization under stability constraints �10–14�.

In this paper, we intend to give a complete theory of bimodal
bifurcations in potential systems with symmetries. We present the
full classification of possible cases for postbuckling paths and
their stability depending on three coefficients. It is important that
all the formulas derived in this paper are given in terms of the
original potential energy of the system with multiple degrees of
freedom. Then, we study unfolding of bimodal branching points
due to change of problem parameters. Our approach is straightfor-
ward, explicit, and practical allowing to analyze bifurcations and
stability of postbuckling paths, as well as their unfolding, based
on calculation of the derivatives of the potential energy and eigen-

vectors of the linearized problem, taken at the bifurcation point.
The presented theory is illustrated by a mechanical example on
stability and postbuckling behavior of an articulated bimodal elas-
tic column having four degrees of freedom and depending on
three parameters.

2 Potential Systems
Consider a potential system with a state vector q

= �q1 ,q2 , . . . ,qn�. Equilibria of such a system are determined by
critical points of the potential energy function V�q� at which first
variation of the potential energy with respect to the state vector is
zero:

�V�q� = 0 �1�
An equilibrium is stable if it is a minimum of the potential. The
sufficient stability condition is that the second variation of the
potential is positive for all small variations �q:

�2V�q� � 0 �2�

with the unstrict inequality �2V�q��0 giving the necessary con-
dition. The equilibrium condition �1� can be written in the form

�V = 0 � = � �

�q1
,

�

�q2
, . . . ,

�

�qn
� �3�

The stability condition �2� requires positive definiteness of the
Hessian matrix

C�q� = �
�2V/�q1

2 �2V/�q1�q2 ¯ �2V/�q1�qn

�2V/�q1�q2 �2V/�q2
2

¯ �2V/�q2�qn

] ] � ]

�2V/�q1�qn �2V/�q2�qn ¯ �2V/�qn
2
� � 0 �4�

with the second derivatives taken at the equilibrium point q. For
the second variation of the potential, one has �2V= 1

2C�q ·�q,
where a dot denotes the inner product in Rn. The symmetric ma-
trix C is called the stiffness matrix for elastic systems.

We consider systems with the potential V�q� having the prop-
erty
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V�q� = V�− q� �5�

This means that the system is symmetric under the inversion of
the state vector q→−q �pendulum systems, straight beams, plates,
etc.�. Clearly, q=0 is an equilibrium for such systems. Moreover,
the Taylor expansion of the potential V�q� in the neighborhood of
q=0 contains only even order terms.

3 Unimodal (Pitchfork) Bifurcation
Consider a system with the potential smoothly dependent on a

parameter � such that the trivial equilibrium q=0 is stable for �
�0 and unstable for ��0. For example, � is a deviation of the
loading parameter from a critical value. At �=0, the stability con-
dition �4� is violated, and the stiffness matrix C0=C�0� becomes
singular and positive semidefinite �C0�0�. In the case of unimo-
dal �pitchfork� bifurcation, there is only one eigenvector u
= �u1 ,u2 , . . . ,un� satisfying the equation

C0u = 0 �6�

This eigenvector u corresponds to the zero eigenvalue of the ma-
trix C0 and is defined up to an arbitrary nonzero scalar factor.
Properties of the unimodal bifurcation are well known. However,
in this section, we provide the derivation that facilitates the further
analysis of the bimodal case.

For small q and �, the potential is given by the Taylor expan-
sion

V =
1

2 	
i,j=1

n
�2V

�qi�qj
qiqj +

1

4! 	
i,j,k,l=1

n
�4V

�qi�qj�qk�ql
qiqjqkql + ¯

+
1

2 	
i,j=1

n
�3V

�qi�qj��
qiqj� + ¯ �7�

where all the derivatives are taken at q=0 and �=0. Here, we used
condition �5� implying that all terms of odd order in q vanish; an
arbitrary constant term of the potential is taken to be zero. The
main �second order� term in expansion �7� can be represented as
V= 1

2C0q ·q+¯. By using this expression in the equation for equi-
libria �3�, we find

�V = C0q + ¯ = 0 �8�

Hence, according to Eq. �6�, nontrivial equilibria for small � are
given asymptotically by

q��� 
 �u �9�

where � is an unknown function of �.
In order to find �, consider the equation u ·�V=0 following

directly from Eq. �3�. By using expansion �7�, we obtain

u · �V =
1

3! 	
i,j,k,l=1

n
�4V

�qi�qj�qk�ql
qiqjqkul + 	

i,j=1

n
�3V

�qi�qj��
qiuj� + ¯

= 0 �10�

In Eq. �10�, the two lowest order terms are presented, and the term
u ·C0q=C0u ·q vanishes due to condition �6�. Substituting Eq. �9�
into Eq. �10� and neglecting higher order terms, we obtain the
equation for � as

v1111

6
�3 + v11��� = 0 �11�

where the coefficients v1111 and v11� are

v1111 � �u · ��4V = 	
i,j,k,l=1

n
�4V

�qi�qj�qk�ql
uiujukul

v11� � �u · ��2�V

��
= 	

i,j=1

n
�3V

�qi�qj��
uiuj �12�

�here, u ·�=	i=1
n ui�� /�qi� is the derivative along the direction u in

state space�.
Nonzero solutions of Eq. �11� are

� = ��−
v11�

v1111
6� �13�

Nontrivial equilibria exist only if the expression under the square
root is positive. Thus, if v11� /v1111�0, then two nontrivial solu-
tions exist for ��0. If v11� /v1111�0, then two nontrivial solu-
tions exist for ��0. These two cases are called supercritical and
subcritical bifurcations, respectively �5�.

Let us study stability of the equilibria q=�u for small �. The
equilibrium is stable if the stiffness matrix C is positive definite
or, equivalently, the second variation �2V= 1

2C�q ·�q is positive
for all �q. Here, the stiffness matrix C�q� is evaluated at q=�u.
Up to zero order terms, C�q�=C0+¯ with the positive semidefi-
nite matrix C0 such that C0�q ·�q=0 only for �qu. Hence, the
stability condition must be checked only along the degenerate
direction �q=u:

�2V =
1

2 	
i,j=1

n � �2V

�qi�qj
�

q=�u,�
�qi�qj



1

4 	
i,j,k,l=1

n � �4V

�qi�qj�qk�ql
�

q=0,�=0
uiuj��uk���ul�

+
1

2 	
i,j=1

n � �3V

�qi�qj��
�

q=0,�=0
uiuj� �14�

where we used the expansion similar to Eq. �7� and neglected
higher order terms. By using notation �12�, we write the stability
condition �2V�0 in the form

v1111

2
�2 + v11�� � 0 �15�

For the trivial equilibrium ��=0�, the stability condition yields
v11���0. Since we assumed that the trivial equilibrium is stable
for ��0, one obtains

v11� � 0 �16�

For the nontrivial solutions �13�, we substitute �=−v1111� /
�6v11�� into Eq. �15� and get

v1111

3
�2 � 0 �17�

This gives the well-known property of the pitchfork bifurcation
�1,5�: The nontrivial equilibrium is stable in supercritical bifurca-
tions �v1111�0� and unstable in subcritical bifurcations �v1111
�0�, see Fig. 1.

Fig. 1 Pitchfork bifurcation: „a… supercritical „v1111>0… and „b…
subcritical „v1111<0…. Stable equilibria are shown by solid lines.
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4 Bifurcation at a Bimodal Critical Point
The goal of this paper is to study bifurcation at a so-called

bimodal critical point, when there are two linearly independent
eigenvectors u1 and u2 �unstable modes� satisfying Eq. �6�. For
small q and �, Eq. �8� gives asymptotic form of the bifurcating
equilibria. Hence, q is a null-space vector of C0 given by an
arbitrary linear combination of u1 and u2:

q��� 
 �u1 + �u2 �18�

where � and � are unknown functions of �. Consider the equa-
tions u1 ·�V=0 and u2 ·�V=0 following directly from Eq. �3�.
Similar to the unimodal case, by using expressions �10� and �18�
and neglecting higher order terms, we obtain the equations for �
and � as

�v11�� + v12���� +
v1111

6
�3 +

v1112

2
�2� +

v1122

2
��2 +

v1222

6
�3 = 0

�19�

�v12�� + v22���� +
v1112

6
�3 +

v1122

2
�2� +

v1222

2
��2 +

v2222

6
�3 = 0

Here, we introduced the notation

vabcd = �ua · ���ub · ���uc · ���ud · ��V vab� = �ua · ���ub · ��
�V

��

�20�

with the derivatives evaluated at q=0 and �=0 �for comparison,
see Eq. �12��.

Equations �19� can be solved as follows. Expressing � from
either of Eq. �19�, we find

� = c�2 �21�
where

c = −
v1111	

3 + 3v1112	
2 + 3v1122	 + v1222

6�v11�	 + v12��

= −
v1112	

3 + 3v1122	
2 + 3v1222	 + v2222

6�v12�	 + v22��
�22�

and 	=� /�. It is also possible to express � through � from Eqs.
�19� with a coefficient depending on the inverse ratio 1 /	=� /�.

The second equality in Eq. �22� yields the quartic equation for 	
as

c4	4 + c3	3 + c2	2 + c1	 + c0 = 0 �23�

with the coefficients

c0 = v1222v22� − v2222v12� c1 = 3v1122v22� − 2v1222v12� − v2222v11�

c2 = 3v1112v22� − 3v1222v11�

�24�
c3 = v1111v22� + 2v1112v12� − 3v1122v11�

c4 = v1111v12� − v1112v11�

Equation �23� has two or four real roots, see Sec. 5 for the proof
that the situation when all four roots are complex is impossible,
i.e., isola point does not exist. The vanishing leading coefficient
�c4=0� corresponds to 1 /	=� /�=0, which yields �=0.

The obtained results can be summarized as follows.
THEOREM 1. Nontrivial equilibria near a bimodal critical point

�=0 have the asymptotic form q���
�u1+�u2, with �=	� and
�= ��� /c. There exist two or four branches of nontrivial equi-
libria given by two or four real solutions 	 of quartic equation
(23), and c given by expression (22). Each branch determines two
symmetric equilibria, which differ by the sign; the branch is sub-
critical if c�0 (equilibria appear for ��0) and supercritical if
c�0 (equilibria appear for ��0).

We note that the maximum number of postbuckling paths was
counted �5� but formulas for the coefficients �21�–�24� are new.

Let us study stability of the equilibria q=�u1+�u2 for small �.
The equilibrium is stable if the stiffness matrix C is positive defi-
nite or, equivalently, the second variation �2V= 1

2C�q ·�q is posi-
tive for all �q with the stiffness matrix C�q� evaluated at q
=�u1+�u2. As in the unimodal case �see Sec. 3�, the stability
condition must be checked only along the degenerate directions.
In the bimodal case, degenerate directions are �q=au1+bu2 with
arbitrary constants a and b. Up to lowest order terms, we have

�2V =
1

2 	
i,j=1

n � �2V

�qi�qj
�

�u1+�u2,�
�qi�qj 


1

4 	
i,j,k,l=1

n � �4V

�qi�qj�qk�ql
�

q=0,�=0
�au1i + bu2i��au1j + bu2j���u1k + �u2k���u1l + �u2l�

+
1

2 	
i,j=1

n � �3V

�qi�qj��
�

q=0,�=0
�au1i + bu2i��au1j + bu2j��

=
1

2
�v11�� +

v1111

2
�2 + v1112�� +

v1122

2
�2�a2

+ �v12�� +
v1112

2
�2 + v1122�� +

v1222

2
�2�ab +

1

2
�v22�� +

v1122

2
�2 + v1222�� +

v2222

2
�2�b2 �25�

where we used expansion �7� and notation �20�; u1i and u2i are the components of the vectors u1 and u2. Then, the stability condition
�2V�0 �for arbitrary nonzero a and b� takes the form of positive definiteness of the 2
2 matrix

�v11�� + �v1111/2��2 + v1112�� + �v1122/2��2 v12�� + �v1112/2��2 + v1122�� + �v1222/2��2

v12�� + �v1112/2��2 + v1122�� + �v1222/2��2 v22�� + �v1122/2��2 + v1222�� + �v2222/2��2 � � 0 �26�
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It was assumed that the trivial equilibrium ��=�=0� is stable

for ��0. In this case, the stability condition �26� yields the in-
equalities

v11� � 0 v22� � 0 v11�v22� − v12�
2 � 0 �27�

For nontrivial equilibria �=	�, �=c�2, condition �26� is equiva-
lent to

�v11�c + �v1111/2�	2 + v1112	 + �v1122/2� v12�c + �v1112/2�	2 + v1122	 + �v1222/2�
v12�c + �v1112/2�	2 + v1122	 + �v1222/2� v22�c + �v1122/2�	2 + v1222	 + �v2222/2�

� � 0 �28�

Thus, an equilibrium with the branch corresponding to a given 	
is stable if the matrix �28� is positive definite. If this matrix has a
negative eigenvalue, the equilibrium is unstable.

5 No Isola Point Exists
We show that it is impossible to have four complex roots 	 of

the quartic equation �23�.
First, we choose the vectors u1 and u2 such that in expressions

�19� and �20� v12�=0. With this choice, the 2
2 matrix with the
elements vij� is reduced to the diagonal form. Then, according to
Eq. �24�, we have

c2

c4
= 3

v1222

v1112
− 3

v22�

v11�

c0

c4
= −

v1222

v1112

v22�

v11�

�29�

Now, let us assume that all four roots of the polynomial �23� are
complex and equal to x1� iy1, x2� iy2. Then, c0 /c4= �x1

2+y1
2��x2

2

+y2
2��0. Hence, from conditions �27� and expressions �29�, we

obtain v1222 /v1112�0 and c2 /c4�0. Under these inequalities, it is
easy to show that �c2 /c4�2�36c0 /c4. On the other hand, c2 /c4

=x1
2+y1

2+x2
2+y2

2+4x1x2. Since c2 /c4�0, we have �c2 /c4�2

� �4x1x2�2=16x1
2x2

2�16c0 /c4. But, this contradicts to the inequal-
ity �c2 /c4�2�36c0 /c4 derived above. Therefore, Eq. �23� always
has real roots.

This means that there is no isola point, i.e., there exist non-
trivial paths bifurcating from the trivial state at the bimodal criti-
cal point.

6 Symmetric Systems
In many practical problems, a system possesses an additional

symmetry represented by the following invariance condition for
the potential:

V�q� = V�S�q�� �30�

with a linear map S�q� satisfying the relation S�S�q��=q �of
course, S is assumed to be different from q→−q�. This condition
may reflect axial or spatial symmetry of the system. For example,
consider a beam of variable cross section with the material distri-
bution symmetric with respect to the middle and identical bound-
ary conditions taken at x= �a, where x is the axial coordinate
with the origin at the beam center. Then, S�w�x��=w�−x�, where
q�w�x� is a deflection function of the beam. Keeping in mind
this example, we say that q is a symmetric or antisymmetric form
if S�q�=q or S�q�=−q, respectively. If S�q�� �q, we say that
the form is of mixed type.

In a unimodal �pitchfork� bifurcation, the unstable mode u must
be either symmetric or antisymmetric: u= �S�u�. It cannot be of
mixed type since that would automatically provide two linearly
independent unstable modes u and S�u�.

Let us consider a bimodal bifurcation. We can always choose
the vectors u1 and u2 to be symmetric or antisymmetric: S�u1,2�
= �u1,2. We assume that u1 is symmetric, while u2 is antisym-
metric.

According to symmetry condition �30�, the coefficients �20� do
not change if we substitute u1 and u2 by S�u1�=u1 and S�u2�
=−u2, respectively. The following coefficients vanish:

v12� = v1112 = v1222 = 0 �31�

since they change their sign under the substitution u2→−u2. Note
that Eq. �19� with conditions �31� coincides with the correspond-
ing equation for a two degrees-of-freedom system with double
symmetry studied earlier �3–5�.

For the sake of convenience, we introduce the normalization
conditions for the vectors u1 and u2 such that

v11� = − 1 v22� = − 1 �32�

which is possible since according to Eq. �27� v11��0 and v22�
�0.

Solving system �19� with Eqs. �31� and �32� gives the unknown
� and � corresponding to three types of nontrivial equilibria:

�2 =
6�

v1111
� = 0 �33�

� = 0 �2 =
6�

v2222
�34�

�2 =
v2222 − 3v1122

v1111v2222 − 9v1122
2 6� �2 =

v1111 − 3v1122

v1111v2222 − 9v1122
2 6� �35�

Solutions �33�, �34�, and �35� with different signs of � and �
define two symmetric, two antisymmetric, and four mixed-type
equilibria �18�, respectively. Symmetric equilibria are subcritical
or supercritical for negative and positive values of v1111, respec-
tively. The type of antisymmetric equilibria is determined simi-
larly by the sign of v2222. Mixed-type equilibria �35� exist if the
quantities v2222−3v1122 and v1111−3v1122 have the same sign. Un-
der this condition, mixed-type equilibria are subcritical or super-
critical for negative and positive signs of the fractional factor in
Eq. �35�, respectively.

The stability condition �26� takes the form

�− � + v1111�
2/2 + v1122�

2/2 v1122��

v1122�� − � + v1122�
2/2 + v2222�

2/2 � � 0

�36�

For symmetric equilibria �33�, eigenvalues of the matrix �36� are

�1 =
v1111

3
�2 �2 =

3v1122 − v1111

6
�2 �37�

By using inequalities �27�, we obtain the stability conditions as

v1111 � 0 3v1122 − v1111 � 0 �38�
For antisymmetric equilibria �34�, the eigenvalues are

�1 =
v2222

3
�2 �2 =

3v1122 − v2222

6
�2 �39�

and the stability conditions become
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v2222 � 0 3v1122 − v2222 � 0 �40�
Finally, for mixed-type equilibria �35�, we find the eigenvalues

�1,2 =
v1111�

2 + v2222�
2 � ��v1111�

2 − v2222�
2�2 + 36v1122

2 �2�2

6

�41�
and the stability conditions

v1111 � 0 and v2222 � 0 v1111v2222 − 9v1122
2 � 0 �42�

The obtained results allow classifying all types of bimodal bi-
furcations by the signs of specific quantities �depending on deriva-
tives of the potential� evaluated at �=0 and q=0, see Table 1. We
note that only three numbers, namely, v1111, v2222, and v1122, gov-
ern the postbuckling behavior.

Bifurcation diagrams corresponding to 16 cases of Table 1 are
shown in Figs. 2 and 3, see the diagrams corresponding to =0.
Due to the symmetry with respect to the planes �=0 and �=0, we
show only the quarter domain � ,��0 of the �� ,� ,�� space. In
the figures, stable equilibria are shown by thick lines. Thin solid
and dashed lines correspond to unstable equilibria with one and
two negative eigenvalues of the matrix �36�, respectively. S, A,
and M are abbreviations for symmetric, antisymmetric, and
mixed-type equilibria, respectively. Pictures in Figs. 2 and 3 �
=0� are based on relations �33�–�36�, �38�, �40�, and �42�.

One can see from Figs. 2 and 3 �=0� that stable nontrivial
equilibria exist in six cases �the Cases 1–3, 6, 11, and 12�. An
equilibrium of any type can be stable: symmetric, antisymmetric,
or mixed type. In the remaining ten cases, all nontrivial equilibria
are unstable. These cases describe limit points leading to dynamic
snaps since beyond these critical points, there is no stable solu-
tion. Nontrivial supercritical equilibria can be unstable for bimo-
dal bifurcations, while for unimodal bifurcations, they are always
stable. However, stable nontrivial equilibria are always supercriti-
cal. If symmetric or antisymmetric equilibrium is stable, mixed-
type equilibrium is unstable, and if mixed-type equilibrium is
stable, the symmetric and antisymmetric equilibria are unstable.

Note that Cases 1, 6, 7, 11, and 12 of Table 1 were recognized
and qualitatively described �5�.

7 Unfolding of Bifurcations at Bimodal Critical Points
Now, let us consider a symmetric system, as in the previous

section, with the potential smoothly depending on m parameters
�1 ,�2 , . . . ,�m. We assume that, for fixed �2= ¯ =�m=0, the bimo-
dal bifurcation takes place in one-parameter system �=�1, as de-
scribed above. For small nonzero �but fixed� values of the param-
eters �2 , . . . ,�m, the system behavior depending on �=�1 can
change qualitatively, i.e., we can observe unfolding of the bimodal

bifurcation. The parameters �2 , . . . ,�m can be treated as imperfec-
tions that keep the system symmetry. Nontrivial equilibria in this
case are described by the asymptotic formula �18�. The unknown
coefficients � and � are determined by the equations

�− � + ṽ11��� + v1111�
3/6 + v1122��2/2 = 0

�43�
�− � + ṽ22��� + v1122�

2�/2 + v2222�
3/6 = 0

where

ṽ11� = 	
k=2

n

�u1 · ��2 �V

��k
�k ṽ22� = 	

k=2

n

�u2 · ��2 �V

��k
�k �44�

with the derivatives taken at �1=�2= ¯ =�m=0 and q=0. Equa-
tions �43� differ from Eqs. �19� and �31� only by small constants
ṽ11� and ṽ22� dependent on the unfolding parameters �2 , . . . ,�m.
By solving system �43�, we find the coefficients � and � corre-
sponding to nontrivial equilibria. Similar to Eqs. �33�–�35�, there
can be symmetric, antisymmetric, and mixed-type solutions:

�2 =
6�� − ṽ11��

v1111
� = 0 �45�

� = 0 �2 =
6�� − ṽ22��

v2222
�46�

�2 = 6
�� − ṽ11��v2222 − 3�� − ṽ22��v1122

v1111v2222 − 9v1122
2

�47�

�2 = 6
�� − ṽ22��v1111 − 3�� − ṽ11��v1122

v1111v2222 − 9v1122
2

If ṽ11�� ṽ22�, the branches of symmetric and antisymmetric equi-
libria �45� and �46� do not intersect in the space �� ,� ,��. This
means that the bimodality is destroyed. As for the equilibria of
mixed type �47�, they coincide with the symmetric ones �45� at the
points

�s�: �s
2 = −

6�ṽ11� − ṽ22��
v1111 − 3v1122

�s = 0 �s =
ṽ22�v1111 − 3ṽ11�v1122

v1111 − 3v1122

�48�

Similarly, mixed-type equilibria �47� coincide with the antisym-
metric ones �46� at the points

�a�: �a = 0 �a
2 =

6�ṽ11� − ṽ22��
v2222 − 3v1122

, �a =
ṽ11�v2222 − 3ṽ22�v1122

v2222 − 3v1122

�49�

At these points, the secondary �postcritical� bifurcations occur.
Critical points �48� and �49� exist if the quantities �2 and �2

determined by the corresponding expressions are positive.
With a change of parameters �2 , . . . ,�m, the bimodal bifurcation

splits into a series of unimodal bifurcations. For understanding the
structure of the bifurcating equilibria, let us plot solutions
�45�–�47� in the �� ,�2 ,�2� space. Each of these solutions is rep-
resented by a straight line, Fig. 4. The line corresponding to the
symmetric equilibria lies in the �� ,�2� plane, the line correspond-
ing to the antisymmetric equilibria lies in the �� ,�2� plane, and the
line corresponding to the mixed-type equilibria intersects the two
previous lines. Of course, only the �2�0, �2�0 part of the space
has physical meaning. Therefore, we can distinguish four qualita-
tively different situations. If �s

2�0 and �a
2�0, then the mixed-

type equilibrium line does not intersect the physical domain �equi-
libria of mixed type do not exist�. If �s

2�0 and �a
2�0, then the

mixed-type equilibrium half-line belongs to the physical domain
�equilibria of mixed type exist and appear in the bifurcation of
symmetric equilibria�; this is the case shown in Fig. 4. If �s

2�0

Table 1 Classification of bifurcations at a bimodal critical
point

No. v1111 v2222 v1111v2222−9v1122
2 v1111−3v1122 v2222−3v1122

1 � � � � �
2 � � � � �
3 � � � � �
4 � � � � �
5 � � � � �
6 � � � � �
7 � � � � �
8 � � � � �
9 � � � � �
10 � � � � �
11 � � � �
12 � � � �
13 � � � �
14 � � � �
15 � � � �
16 � � � �
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Fig. 2 Unfolding of the bimodal bifurcation: Cases 1–8
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Fig. 3 Unfolding of the bimodal bifurcation: Cases 9–16
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and �a
2�0, then the mixed-type equilibrium half-line belongs to

the physical domain �equilibria of mixed type exist and appear in
the bifurcation of antisymmetric equilibria�. Finally, if �s

2�0 and
�a

2�0, then the mixed-type equilibrium segment between the
points ��s ,�s

2 ,�s
2� and ��a ,�a

2 ,�a
2� belongs to the physical domain

�equilibria of mixed type exist and are bounded by the bifurca-
tions of symmetric and antisymmetric equilibria�.

In the �� ,� ,�� space, the equilibrium lines become curves,
which are orthogonal to the planes �=0 and �=0. Eliminating �
from Eqs. �47�, we obtain

�v2222 − 3v1122��2 − �v1111 − 3v1122��2 = 6  = ṽ11� − ṽ22�

�50�

On the �� ,�� plane, this is a hyperbola, ellipse, or empty set
depending on the signs of the coefficients v1111−3v1122, v2222
−3v1122, and .

Unfolding of bifurcations for 16 cases of Table 1 is depicted in
Figs. 2 and 3. These figures are based on relations �45�–�50�. Note
that the bifurcation points of the trivial equilibrium correspond to
�= ṽ11� for the symmetric path and �= ṽ22� for the antisymmetric
path. For the sake of simplicity, in the figures, we took ṽ11��0
and ṽ22��0, which does not change the pictures qualitatively.

As an example, let us consider unfolding of the first case in
Table 1. The unperturbed situation �ṽ11�= ṽ22�=0�, is shown in
Fig. 2 �Case 1, =0�. From Table 1, it follows that the denomi-
nators in formulas �48� and �49� are positive. Hence, if = ṽ11�

− ṽ22��0, then there are only intersections �bifurcations� between
symmetric and mixed-type equilibrium branches at the point �48�,
Fig. 2 �Case 1, �0�. If �0, then only antisymmetric and
mixed-type equilibrium branches intersect at the point �49�, Fig. 2
�Case 1, �0�. Therefore, in the unfolding picture, the mixed-
type equilibria appear due to the secondary bifurcation of sym-
metric ��0� or antisymmetric ��0� equilibria.

It should be noted that the unfolding of a bimodal critical point
is qualitatively different for systems without symmetry property
�30�. In the latter case, typically, there are no secondary pitchfork
bifurcations.

In multiparameter case, stability criterion for the equilibria is
the condition of positive definiteness of the matrix �36�, where
one must substitute −� by −�+ ṽ11� and −�+ ṽ22� in the first and
second diagonal elements, respectively.

First, consider the trivial equilibrium �=�=0. In this case, the
eigenvalues of the matrix �36� become

�1 = − � + ṽ11� �2 = − � + ṽ22� �51�

The bimodal critical point is defined by the conditions �1=�2=0.
With the use of Eq. �44�, these conditions define a plane of codi-
mension 2 in parameter space ��1 , . . . ,�m�. Hence, the codimen-
sion of a bimodal critical point equals 2 �this critical point can be
typically found by adjusting values of two parameters�. Here, the
symmetry �30� is very important: Due to this symmetry, the off-
diagonal elements ṽ12� vanish. These elements are nonzero in sys-
tems without symmetry �30� or if both unstable modes are sym-
metric �or antisymmetric�. In that case, the codimension of a
bimodal critical point equals 3, which agrees with general results
of the singularity theory �15�.

Stability of nontrivial equilibria can be studied similarly by
computing eigenvalues of the 2
2 second variation matrix. How-
ever, in the perturbed case, we can avoid these computations by
using known properties of unimodal bifurcations �Sec. 3�, and the
properties of postcritical paths for large �1��2 , . . . ,�m �at these
values of �1, the stability type of a postcritical path is the same as
for �2= ¯ =�m=0�. The results of stability analysis are shown in
Figs. 2 and 3. Recall that stable equilibria are shown by thick
lines, while thin solid and dashed lines correspond to unstable
equilibria with one and two negative eigenvalues of the matrix
�36�, respectively. For example, in Fig. 2 �Case 1, �0�, the first
bifurcation is supercritical �symmetric equilibria are stable�, and
antisymmetric equilibria appear when the unstable trivial equilib-
rium bifurcates �antisymmetric equilibria are unstable�. After the
secondary bifurcation, antisymmetric equilibria become stable as
in the bimodal picture �=0�, and unstable mixed-type equilibria
appear. We can see that for higher values of �, the stability prop-
erties of all the equilibria are the same as for the bimodal bifur-
cation for =0.

We remark that the unfoldings in Cases 5 and 10, as well as 15
and 16, are similar from the physical point of view since the
unstable paths differ only by degrees of instability.

Note that for symmetric two degrees-of-freedom systems, clas-
sification of four cases with respect to the parameters v1111
−3v1122 and v2222−3v1122 was given in �3�, and Cases 1, 7, 11,
and 12 ��0� of Figs. 2 and 3 were drawn in �4�, while we have
recognized 16 different cases, each of them corresponding to dif-
ferent pictures in 3D space.

8 Mechanical Example
As a mechanical example, we consider an elastic articulated

column with elastically clamped ends loaded by an axial force P,
Fig. 5. The column consists of five segments of length L con-
nected by six elastic hinges with the bending stiffnesses
b0 ,b1 , . . . ,b5. Linear stability problem for the straight equilibrium
of the column has been treated in �10�. We consider a symmetric
structure with symmetric boundary conditions, so that b0=b5, b1
=b4, and b2=b3. Deflection of the column is determined by the
vector of coordinates q= �q1 ,q2 ,q3 ,q4�, which are related to the
angles between the segments and the horizontal axis as

Fig. 4 Structure of nontrivial equilibria for nearly bimodal criti-
cal point

Fig. 5 Elastic articulated column loaded by an axial force
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qi+1 − qi = L sin �i i = 0, . . . ,4 q0 = q5 = 0 �52�
The potential function of the column is

V = 	
i=0

5 �bi

2
��i − �i−1�2 − PL�1 − cos �i�� �−1 = 0 �5 = 0

�53�
For the sake of simplicity, we introduce nondimensional quan-

tities

q̃i =
qi

L
P̃ =

PL

b*
b̃i =

bi

b*
Ṽ =

V

b*
�54�

where b* is a reference stiffness.
Substituting Eq. �52� into Eq. �53� with the use of Eq. �54� and

omitting tildes, we obtain the nondimensional potential function
as

V =
b0

2
�arcsin q1�2 +

b1

2
�arcsin�q2 − q1� − arcsin q1�2

+
b2

2
�arcsin�q3 − q2� − arcsin�q2 − q1��2 +

b2

2
�arcsin�q4 − q3�

− arcsin�q3 − q2��2 +
b1

2
�arcsin q4 + arcsin�q4 − q3��2

+
b0

2
�arcsin q4�2 − P�5 − �1 − q1

2 − �1 − �q2 − q1�2

− �1 − �q3 − q2�2 − �1 − �q4 − q3�2 − �1 − �q4�2� �55�

For small values of the coordinates qi, the potential can be ex-
panded in Taylor series

V =
b0

2
q1

2 +
b1

2
�q2 − 2q1�2 +

b2

2
�q3 − 2q2 + q1�2 +

b2

2
�q4 − 2q3 + q2�2

+
b1

2
�− 2q4 + q3�2 +

b0

2
q4

2 −
P

2
�q1

2 + �q2 − q1�2 + �q3 − q2�2

+ �q4 − q3�2 + q4
2� + ¯ �56�

The second order terms given in Eq. �56� define the stiffness ma-
trix C. Equation �6� for the linear buckling problem takes the form

�b0 + 4b1 + b2 − 2P�u1 + �− 2b1 − 2b2 + P�u2 + b2u3 = 0

�− 2b1 − 2b2 + P�u1 + �b1 + 5b2 − 2P�u2 + �− 4b2 + P�u3 + b2u4 = 0
�57�

b2u1 + �− 4b2 + P�u2 + �b1 + 5b2 − 2P�u3 + �− 2b1 − 2b2 + P�u4 = 0

b2u2 + �− 2b1 − 2b2 + P�u3 + �b0 + 4b1 + b2 − 2P�u4 = 0

Due to symmetry of the column, Eq. �57� possesses symmetric
and antisymmetric solutions. For the symmetric solution, we take
u4=u1, u3=u2. Then, from the first two �or the last two� equations
�57�, we get the quadratic equation for buckling loads

Ps
2 − Ps�b0 + 2b1 + b2� + b0b1 + b0b2 + b1b2 = 0 �58�

Both roots of this equation are positive, and the smaller root gives
the critical buckling load if buckling is symmetric.

For the antisymmetric solution, we take u4=−u1, u3=−u2 and
similarly obtain the quadratic equation

Pa
2 − Pa�3

5
b0 + 2b1 + 3b2� +

1

5
b0b1 +

9

5
b0b2 + 5b1b2 = 0 �59�

The smaller root of this equation yields the critical buckling load
if buckling is antisymmetric.

The condition of bimodality is that the smaller Ps is equal to the
smaller Pa. So, we have

2b2 −
2

5
b0 + �b0

2 − 2b0b2 + 4b1
2 + b2

2

=
1

5
�9b0

2 + 40b0b1 − 90b0b2 + 100b1
2 − 200b1b2 + 225b2

2

�60�
This equation defines a surface in three-dimensional space of the
column stiffnesses �b0 ,b1 ,b2� shown in Fig. 6. Each point on this
surface corresponds to a column with the bimodal critical buck-
ling load.

Note that for rigid clamping of the column �as b0 tends to
infinity�, Eqs. �58� and �59� furnish the buckling loads

Ps = b1 + b2 Pa =
b1

3
+ 3b2 �61�

Thus, for rigid clamping, the bimodality condition is b1=3b2. This
means that the bimodal surface tends to the plane b1=3b2 for the
stiffness b0 tending to infinity, see Fig. 6.

Let us study postbuckling behavior of the symmetric column
for the parameters b0=1, b1=0.25, b2=1, satisfying the bimodal-
ity condition �60�. According to Eqs. �57�–�59�, we compute the
bimodal critical buckling load P=1 and the corresponding eigen-
modes �eigenvectors� u1= �1,2 ,2 ,1� and u2= �1,0.4,−0.4,−1�.
Expanding the potential function �55� up to fourth order terms and
using Eq. �20�, we compute the coefficients v11�=−4.0 and v22�

=−3.36. Then, we normalize the eigenvectors u1 and u2 dividing
them by �−v11� and �−v22�, respectively, so that the condition
�32� is satisfied. Using normalized eigenvectors in Eq. �20�, we
calculate the coefficients

v1111 = 0.25 v2222 = 0.38605 v1122 = 0.25 �62�
The bifurcation belongs to Type 1 in Table 1. It means that both
symmetric and antisymmetric solutions are supercritical and
stable while the mixed-type solution is supercritical and unstable,
see Fig. 2 �Case 1, =0�. The nontrivial equilibria according to
Eqs. �33�–�35� are given asymptotically as

qs = � ���0,2.4494,4.8989,4.8989,2.4494,0�

qa = � ���0,2.1507,0.8602,− 0.8602,− 2.1507,0�
�63�

qm1 = � ���0,2.4665,2.7184,1.6110,− 0.3018,0�

Fig. 6 Stiffness parameters for columns undergoing bimodal
buckling
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qm2 = � ���0,− 0.3018,1.6110,2.7184,2.4665,0�
The stiffnesses of the bimodal column and corresponding new
equilibrium states, divided by ���, are presented in Fig. 7.

Let us study unfolding of this bifurcation due to change of the
stiffness �b0. According to Eqs. �44� and �56�, we find

 = ṽ11� − ṽ22� = 2�b0�u11
2 − u21

2 � = − 0.0952�b0 �64�

Hence, if we decrease the stiffness �b0�0, then the antisymmet-
ric form of instability becomes critical, and the corresponding
unfolding is shown in Fig. 2, Case 1 ��0�. If the stiffness is
increased �b0�0, then the symmetric form of instability becomes
critical with the unfolding shown in Fig. 2, Case 1 ��0�.

For the stiffnesses b0=1, b1=0.15, b2=0.76465, we compute
the bimodal critical buckling load P=0.84167, the corresponding
eigenmodes u1= �1,3.0554,3.0554,1� and u2= �1,0.3888,
−0.3888,−1�, and the coefficients v11�=−10.449 and v22�

=−3.3517. Then, we normalize the eigenvectors and calculate the
coefficients

v1111 = 0.29058 v2222 = 0.35097 v1122 = 0.05163 �65�
The bifurcation belongs to Type 6 in Table 1. This means that
symmetric and antisymmetric solutions are supercritical and un-
stable while the mixed-type solution is supercritical and stable,
see Fig. 2 �Case 6, =0�. Thus, we have recognized a surprising
effect that a symmetric bimodal column loaded by an axial force
can buckle with a stable asymmetric mode!

According to Eqs. �33�–�35�, the bifurcating equilibria are
given asymptotically as

qs = � ���0,1.4056,4.2949,4.2949,1.4056,0�

qa = � ���0,2.2583,0.8780,− 0.8780,− 2.2583,0�
�66�

qm1 = � ���0,2.9661,4.3570,2.9848,− 0.5632,0�

qm2 = � ���0,− 0.5632,2.9848,4.3570,2.9661,0�
The stiffnesses of the bimodal column and corresponding non-
trivial equilibrium states, divided by ���, are presented in Fig. 8.

If we study unfolding of this bifurcation due to change of the
stiffness �b1, then according to Eqs. �44� and �56�, we get

 = ṽ11� − ṽ22� = 2�b1��u12 − 2u11�2 − �u22 − 2u21�2� = 1.3358�b1

�67�

Thus, if we decrease the stiffness �b1�0, then the antisymmetric
form of instability becomes critical, and the corresponding unfold-
ing is shown in Fig. 2, Case 6 ��0�. If the stiffness is increased
�b1�0, then the symmetric form of instability becomes critical
with the unfolding is shown in Fig. 2, Case 6 ��0�.

8.1 Bimodal Optimal Column. Let us consider columns un-
der the condition

b0 + b1 + b2 = const �68�
This equality resembles the fixed total volume constraint for a
continuous column. Figure 9 shows dependence of the critical
load on b1 and b2 with b0 given by Eq. �68� with const=1; due to
homogeneity of Eqs. �58� and �59�, the plot for any const can be
obtained from Fig. 9 by scaling. Columns with bimodal critical
loads correspond to edges, where the surfaces Pa and Ps intersect.
The analysis �similar to the one given above� shows that the left
bimodal arch contains two big parts corresponding to Bifurcations
1 and 6 according to the classification in Fig. 2; between these two
parts, there is a tiny part corresponding to Bifurcation 11 �not
shown in the figure�. The right arch corresponds to the bifurcation
of Type 1. The maximal critical load Pmax=0.4465 is attained at
the bimodal point b0=0.4717, b1=0.1021, b2=0.4263 with the
bifurcation of Type 1. We note that the postbuckling behavior of
the articulated optimal column is similar to that of the continuous
optimal column �12�. Clearly, a bimodal optimal solution is the
generic phenomenon. In different optimization problems, the bi-
modal solutions were found �6,10–14�.

9 Conclusion
For general potential systems with symmetry having multiple

degrees of freedom, we studied bifurcations at bimodal branching
points. Formulas describing postbuckling paths and conditions for
their stability are derived. We presented the full list of possible
cases for postbuckling paths and their stability depending on three
system coefficients v1111, v2222, and v1122. In order to calculate
these coefficients, we need to know the derivatives of the potential
energy and eigenvectors of the linearized problem taken at the
bifurcation point. Then, we studied unfolding of bimodal branch-
ing points due to change of system parameters. Classification and
analysis of all possible cases given in Table 1 with Figs. 2 and 3
constitute the central result of the paper. It is remarkable that all
the formulas derived in this paper are given in terms of the origi-
nal potential energy.

The presented theory is illustrated by a mechanical example on
stability and postbuckling behavior of a bimodal articulated elastic
column having four degrees of freedom and depending on three
stiffnesses at the hinges �problem parameters�. It is shown that

Fig. 7 Stiffnesses and buckling modes of the elastic column
„b0=1,b1=0.25,b2=1…

Fig. 8 Stiffnesses and buckling modes of the elastic column
„b0=1,b1=0.15,b2=0.76465…

Fig. 9 Critical load depending on stiffness parameters

021016-10 / Vol. 75, MARCH 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



bimodal critical points are described by smooth surfaces in param-
eter space. Numerical results are presented illustrating influence
of problem parameters on postbuckling paths, their stability and
unfolding. Two different kinds of postbuckling behavior are dem-
onstrated. One is associated with stable symmetric and antisym-
metric modes, and unstable mixed-type modes, while the second
one is associated with stable mixed-type modes and unstable sym-
metric and antisymmetric modes. Thus, a surprising phenomenon
that a symmetric bimodal column loaded by an axial force can
buckle with a stable asymmetric mode is recognized.

A considered example with the constrained sum of the stiff-
nesses of the articulated column shows that the maximum critical
load �optimal design� is attained at the bimodal point with the
postbuckling behavior similar to that of the continuous optimal
column.

We remark that we have studied bimodal bifurcations of the
stable stability path of the potential system with increasing load
parameter. Certainly, the case when the trivial equilibrium is un-
stable on both sides of the bifurcation point could also be useful.
It would be interesting to recognize more physical systems and
phenomena related to bimodal bifurcations.
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Development of Component-Level
Damage Evolution Models for
Mechanical Prognosis
This paper presents component-level empirical damage evolution regression models
based on loads and damage information that do for mechanical damage prediction what
the Paris law does for predicting crack growth under fatigue loading. Namely, these
regression models combine information about the current damage state and internal
system loads to predict the progress of damage to failure. One of the drawbacks of
Paris-like crack evolution laws is that localized information about the loading (stress)
and damage (crack length) is required. In structural health monitoring applications, it is
not feasible to instrument every potential crack initiation region to collect this localized
information. The component-level damage evolution regression models developed here
only require global measurements that quantify the damage and loading at the level of the
component rather than at the site of damage. This paper develops damage evolution
regression models for an automotive sway bar link undergoing axial fatigue loading with
two different damage mechanisms at a weldment and at an electrical discharge machin-
ing notch. Restoring force diagrams are used to calculate the load indicators as damage
progresses and transmissibility functions are used to calculate the damage indicator
during tests to failure. A component-level load intensity factor ��K� is calculated during
these tests so that the rate of damage accumulation can be used to predict the growth of
damage and ultimate failure. �DOI: 10.1115/1.2793137�

Keywords: damage identification, prognosis, load identification, restoring forces, empiri-
cal damage evolution models

1 Introduction
In order to predict the life of structural components, damage

evolution laws are required. Phenomenological laws such as Paris
law �Paris et al. �1,2�� for cracks are a natural choice for ferrous
materials because this law has many forms to suit different con-
ditions at the crack tip under fatigue loading. One of the draw-
backs of Paris-like crack evolution laws is that localized informa-
tion about the loading �stress� and damage �crack length� is
required. In structural health monitoring applications, it is not fea-
sible to instrument every potential crack initiation region to col-
lect this localized information. A component-level damage evolu-
tion regression model would be useful if the model required only
global measurements that quantify the damage and loading at the
level of the component rather than at the site of damage. Many
structural health monitoring algorithms could then be applied to
extract the damage indicator and the load indicator. This paper
develops a component-level damage evolution regression model
and then applies it to predict the growth of damage in a ferrous
sway bar link at a weldment and within an electrical discharge
machining �EDM� notch.

Damage causes changes in the internal loading of components
in mechanical systems, and it is important to track such changes in
loading to predict the growth of damage. In this paper, restoring
force curves are used to characterize the internal loading on com-
ponents of vehicle suspension systems and to track changes in the
loads with damage for predictive purposes. Restoring forces were
introduced by Masri et al. �3–6� for nonparametric identification
of nonlinear systems. The nonlinear characteristics �restoring

force maps� were expressed in terms of orthogonal functions for
system identification. Surace et al. �7� used restoring forces to
characterize the dynamic properties of automotive dampers. Ha-
roon et al. �8,9� utilized restoring forces for nonlinear character-
ization and system identification of mechanical systems in the
absence of an input measurement. In this work, the authors noted
that only response acceleration measurements are needed to gen-
erate restoring force curves, which is an essential property for
analyzing operating data in structural components. Haroon and
Adams �10� showed that restoring forces can be used to charac-
terize and quantify the changes in the internal component loads
with the onset and progression of damage. This feature has been
utilized in this paper to quantify internal component loads. This
information is then combined with a damage index based on trans-
missibility functions to develop damage evolution models for me-
chanical damage prognosis. Zimmerman et al. �11�, Schultz et al.
�12�, James et al. �13�, and Zhang et al. �14� showed that trans-
missibility measurements are useful for detecting and locating
damage. Worden �15� and Johnson and Adams �16� developed
transmissibility-based damage detection indices and used them to
successfully detect damage in numerous applications.

In the following sections, the framework for the damage growth
regression models is presented and the models are developed for
different crack damage mechanisms in automotive sway bar links.

2 Framework

2.1 Load Identification

2.1.1 Restoring Forces. The restoring force is an internal force
that opposes the motion of an inertial element within a system.
The left hand side of Newton’s second law for a body with con-
stant mass m and acceleration vector a contains the stiffness and
damping restoring forces, �F=ma.

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received December 25, 2006; final
manuscript received August 17, 2007; published online February 26, 2008. Review
conducted by Kenneth M. Liechti.

Journal of Applied Mechanics MARCH 2008, Vol. 75 / 021017-1Copyright © 2008 by ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Restoring force techniques only require that the output accel-
erations of a component be measured; therefore, restoring forces
can be identified for systems of components in practical applica-
tions without using sophisticated sensing arrays. Consider the two
degree-of-freedom quarter car model shown in Fig. 1. The equa-
tions of motion for the sprung mass, M2, can be rearranged to give
the following expression for the restoring force in the suspension:

M2ẍ2 = − C2�ẋ2 − ẋ1� − K2�x2 − x1� − K3x2

+ N1�x1�t�,x2�t�, ẋ1�t�, ẋ2�t�� �1�

where xk�t� are the displacements of the unsprung and sprung
masses, Mk, C2 is the suspension viscous damping coefficient, Kk
are the stiffness in the suspension and vehicle body, and
N1�x1�t� ,x2�t� , ẋ1�t�ẋ2�t�� denotes the nonlinear forces in the
suspension.

The plot between the acceleration of the sprung mass and the
relative velocity between the sprung mass and the unsprung mass
allows the damping restoring force, or the component force de-
pendent on the velocity, in the suspension to be characterized.
Similarly, the plot between the acceleration of the sprung mass
and the relative displacement between the sprung mass and the
unsprung mass allows the stiffness restoring force, or the compo-
nent force dependent on the displacement, in the suspension to be
characterized. �Note that the restoring forces obtained by plotting
acceleration versus displacement or velocity are scaled by the
mass, e.g., M2 in Eq. �1��. The frequency characteristics of the
internal forces can be observed by plotting the restoring forces at
different frequencies. Restoring force plots can be generated for
any two response locations by using similar two degree-of-
freedom models.

Restoring forces provide two pieces of information about inter-
nal system loads:

�1� The area entrained by the restoring force curves is deter-
mined in part by the system parameters �mass, stiffness,
and damping� and is proportional to the magnitude of the
internal loads.

�2� The shape of the restoring force curves identifies the nature
of the internal loads, linear or nonlinear. Nonlinear restor-
ing forces can be identified using the measured shapes, e.g.,
Coulomb friction, cubic stiffness, etc.

Feature �1� can be illustrated by analyzing a single degree-of-
freedom �SDOF� system �Fig. 2� in a manner similar to the phase-
plane analysis described by Stites et al. �17�. These authors
showed that the phase-plane plot for a forced SDOF system can

be represented by an equation for an ellipse. Consider the equa-
tion of motion for the system in Fig. 2 when the system is excited
by a simple harmonic forcing function

mẍ + cẋ + kx = f�t� �2�

where m is the mass, c is the damping, k is the stiffness, and f�t�
is the harmonic forcing function. The authors showed that the
steady-state phase-plane plot can be written in the following form
of the equation for an ellipse:

ẋ2

1/m
+

x2

1/k
= R �3�

where R is a constant that depends on the system damping, input
amplitude, and input frequency. Consequently, in a linear system
subjected to a constant forcing amplitude and frequency, any
change in the geometry of the phase-plane plot can be attributed
to changes in the system parameters �mass, stiffness, and
damping�.

The restoring force plots can be described in a similar manner.
Like the phase-plane plot, restoring force plots are also the regres-
sion of a higher order variable on a lower order variable �accel-
eration on velocity or acceleration on displacement�. Consider
once again the SDOF system in Fig. 2. If a time derivative of Eq.
�2� is taken, x� can be expressed as the time derivative of ẍ using
the chain rule as shown in the second equation below:

mx� + cẍ + kẋ = ḟ�t� �4�

x� =
dẍ

dt
=

dẍ

dẋ

dẋ

dt
= ẍ

dẍ

dẋ
�5�

Equation �4� can be integrated over one complete cycle of mo-
tion of the mass m and arranged as shown below, where the period
of oscillation is 2� /� and Z is a constant of integration:

mẍ2 + kẋ2 = 2��
cycle

ḟ�t�dẋ −�
cycle

cẍdẋ + Z� �6�

For an input harmonic force with constant amplitude F and fre-
quency �,

f�t� = F sin��t� �7�
the steady-state system response takes the form

x�t� = A sin��t� + B cos��t� �8�

where A and B are constant amplitudes.
The integrals in Eq. �6� can be evaluated by substituting Eqs.

�7� and �8� with appropriate derivatives and using the fact that dẋ
is equivalent to �dẋ /dt�dt. The results are

�
0

2�/�

ḟ�t�dẋ =�
0

2�/�

ḟ�t�ẍdt = − �2FB� �9�

�
0

2�/�

cẍdẋ =�
0

2�/�

cẍ2dt = c�3�A2 + B2�� �10�

Now, Eq. �6� simplifies to

Fig. 1 Two DOF quarter car model

Fig. 2 SDOF linear system
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ẍ2

1/m
+

ẋ2

1/k
= 2�− �2FB� + c�3�A2 + B2�� + Z� = R

ẍ2

R/m
+

ẋ2

R/k
= 1 �11�

This equation describes an ellipse. For a constant amplitude and
frequency forcing function, changes in the system properties
�mass, stiffness, and damping� will cause a change in the major
and minor axes, and, consequently, the area of the ellipse formed
by regressing ẍ on ẋ. Figure 3 shows the changes in the ellipse of
Eq. �11� with stiffness, damping, and mass changes for a constant
amplitude and frequency harmonic forcing function. This example
illustrates that the restoring force plots are sensitive to changes in
mechanical parameters �mass, stiffness, and damping�. Because
the area of the restoring force curve is proportional to the magni-
tude of the internal load, the area of a restoring force curve can be
estimated to quantify changes in internal loads with damage.

The frequency dependent nature of restoring forces requires
that inputs be narrowband in nature so that changes in the restor-
ing force characteristics can be observed at discrete frequencies;
hence, slow sine sweeps are used to generate the restoring force
curves. Cafferty et al. �18� showed that the restoring forces can be
generated using random excitation, but these restoring forces are
corrupted by small stochastic components. Acceleration measure-
ments are the most convenient measurements to make in experi-
mental data analysis and can also be integrated to estimate veloc-
ity and displacement time histories; therefore, restoring force
curves are especially appropriate for experimental purposes. Note,
however, that the static �dc� components of the velocity and dis-
placement time histories are lost in the integration process; con-
sequently, certain types of nonlinear internal forces such as qua-
dratic stiffness nonlinearities, which produce steady streaming
�i.e., a dc response�, may be difficult to identify.

2.2 Damage Indicator. A damage indicator based on trans-
missibility functions is used in this work. This damage indicator is
related to fatigue crack geometry �length, depth� but is more prac-
tical to estimate than the crack parameters even in a system of
components. Transmissibility functions are like frequency re-

sponse functions �FRFs�, with the only difference being that trans-
missibility functions are frequency dependent ratios between two
inputs rather than the ratio between an input and an output. Hence,
transmissibility functions are functions of only the zeros, and not
the poles, of the system, and therefore, contain information about
localized regions of components. The transmissibility is defined as

Tij��� =
Xi���
Xj���

�12�

where T is the transmissibility between acceleration, X, at mea-
surement degrees of freedom �DOFs� i and j. Thus, acceleration
response measurements can be used to directly assess information
about the local mechanical changes in a system of components.
No measurement of the input is required for computing the trans-
missibility, which can be applied to experimental and operational
data for diagnosis and prognosis of mechanical damage. Broad-
band random inputs are used to generate the transmissibility
functions.

A damage indicator based on the natural log of the transmissi-
bility across the link is used to track the growth of damage
�Johnson �19��:

DIk =

�
i=a

b

	Re�ln�Tk��i��� − Re�ln�Tk−1��i���	

Nf
�13�

where Tk is the transmissibility at the kth measurement, Tk−1 is the
previous measurement, ln is the natural log, � is the frequency, i
is the index that determines the range of frequencies �a to b� over
which the change is summed, and Nf is the total number of fre-
quencies. The advantage of this damage indicator is that it gives
the same value of the change in the function irrespective of which
measurement DOF is in the numerator.

2.3 Loads+Damage=Prognosis. Load identification is es-
sential for prognostics �damage prediction�. Information about the
current status of damage is not sufficient for accurate prediction of
future damage levels. Internal loads are determined by the exter-
nal loads along with the system parameters. Damage causes

Fig. 3 Change in area of acceleration-velocity ellipse with system parameters: „a…
stiffness, „b… damping, and „c… mass
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changes in the parameters of the system, which consequently af-
fects the internal load distribution. Identical sets of external loads
will result in different internal loads for undamaged and damaged
systems. Loads and damage estimates can be used separately for
trend-based prognostics; however, if both pieces of information
are used together, then empirical relationships can be defined for
objective damage prognosis. These relationships can be thought of
in terms of the crack power laws like the Paris law of crack
growth,

da

dN
= E�Y��
�a�m �14�

where a is half the crack length, N is the number of cycles, � is
the applied stress, E and m are parameters that depend on the
material, environment, frequency, temperature and stress ratio,
and Y is a dimensionless parameter that depends on both the
specimen and crack geometry. In Eq. �14�,

�K = �Y��
�a� �15�

is the range of the stress intensity factor that is dependent in part
on the crack length, local stress distribution, and component ge-
ometry.

This law is an empirical law that indicates that the growth of
the crack is dependent on the current state of the crack and the
current load distribution. In other words, the damage and load
together determine how the damage grows. Similar relations can
be determined for mechanical system prognosis. Information
about the current status of damage �Eq. �13�� and the change in
loads accompanying damage �restoring force areas� can be used
together to develop empirical damage evolution models for dam-
age prognosis. This relation to predict damage growth can be ex-
pressed as

d��T�
dN

= C	�T	m � 	��RFarea�	n �16�

In this equation, �T represents the change in the transmissibility
across the link estimated by the damage indicator DIk, �RFarea

Fig. 4 Fatigue test setup

Fig. 5 Fixture for placing link under test in fatigue machine
grips

Fig. 6 Accelerometers attached to the ends of sway bar link

Fig. 7 Weld location on sway bar link

Fig. 8 Initial circumferential crack in sway bar link under cy-
clic loading
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represents the changing load �change in restoring force area�, and
C, m, and n are some system constants that depend on material
properties, material geometry, boundary conditions, loading, and
damage mechanism. Developing such empirical relations for dif-
ferent mechanical damage mechanisms will improve the process
of predicting damage growth and ultimately failure.

3 Experimental Setup
An MTS® 810 material test system was used to perform

tension-tension fatigue tests on the front sway bar link of an Isuzu
impulse. A picture of the experimental setup is shown in Fig. 4. A
fixture was designed to hold the link in the grips of the fatigue
machine �Fig. 5�. Two single axis accelerometers with a nominal

sensitivity of 1000 mV /g were attached to the two ends of the
link to measure axial acceleration �Fig. 6�. An initial tensile load
was applied to the link and then the link was subjected to a cyclic

Table 1 Parameters for sine sweep and random inputs; Link 1

Input type
Amplitude

�mm�

Frequency
content

�Hz�
Sampling

frequency �Hz�
Test length

�s�

Sine sweep 0.1 0–15 2000 100
Random 0.08 rms 0–30 2000 100

Fig. 9 Change in restoring force with the appearance of the initial circumferential
crack in link: undamaged „—… and initial crack „---…

Fig. 10 Change in transmissibility with the appearance of the initial circumferential
crack in link: undamaged „—… and initial crack „---…
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load at 5 Hz, which can be thought of as a durability cycle. Sine
sweep and random input characterization tests were run intermit-
tently to estimate and track the load and damage indicators.

4 Empirical Damage Growth Models

4.1 Fatigue Crack at Weld. The front sway bar link was
subjected to an initial tensile load of 6000 N. Sine sweep and
random inputs were used to characterize the link and the associ-
ated test parameters are given in Table 1.

It was observed that as expected the weakest parts of the link
are the weld locations where the main rod is attached to the ends
�Fig. 7�. The cyclic loading led to the appearance of a circumfer-
ential crack at the lower weld location �input side�. The load and
damage indicators were estimated throughout the initiation and
propagation of the crack to failure and the empirical damage
propagation model �Eq. �17�� was developed.

The link was subjected to blocks of 2500 cycles of a 0.15 mm
amplitude cyclic load at a frequency of 5 Hz with sine sweep and
random tests conducted between the cyclic loading blocks. The
cyclic load corresponded to a module load range of about 6000 N.
The loading blocks of testing were continued as the circumferen-
tial crack initiated and propagated to failure.

After 5000 cycles of cyclic loading, a visible circumferential
crack appeared at the lower weld �Fig. 8�. The changes in the
velocity-dependent restoring force �14.5 Hz� and the transmissi-
bility are shown in Figs. 9 and 10. �The velocity-dependent inter-
nal load shows primarily hysteresis.� There is a clear increase in
damping restoring force area �or load� and a decrease in transmis-
sibility, especially between 5 Hz and 25 Hz. The damping restor-
ing force curve area was estimated to track the change in load and
the damage index based on the natural log of the transmissibility
�5–15 Hz� �Eq. �13�� across the link was used to track the growth
of damage.

The block cyclic loading tests were continued until complete
failure and the load and damage indicators were estimated
throughout the tests. Figure 11 shows the progressive growth of
the circumferential crack to failure in pictures, and Fig. 12 shows

Fig. 11 Appearance and progressive growth of circumferential
crack to failure in sway bar link under tension-tension fatigue
loading: „a…–„e…

Fig. 12 Fatigue failure of sway bar link under constant ampli-
tude cyclic loading

Fig. 13 Change in velocity restoring force with appearance and progressive growth
of circumferential crack to failure in sway bar link under tension-tension fatigue load-
ing: undamaged „—…, initial crack „---…, progression 1 „· · · ·…, progression 2 „-.-.-…, just
before failure „-�-�-�…, and after failure „-°-°-…
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the fracture surfaces of the cracked portions of the link that are
similar to typical fatigue failures in steel components. Figures 13
and 14 show the progressive changes in the restoring forces
�14.5 Hz� and the transmissibility across the link as the crack
grows. The velocity restoring force shows an increasing area with
growth of the crack and also shows an indication of the approach-
ing failure. Immediately before complete failure, the restoring
force becomes multiply connected �Fig. 13 ���������. The

reason for this can be understood by looking at the acceleration
response of the lower �input� end of the link as the restoring force
curve changes to multiply connected �Fig. 15�. As Fig. 15 shows,
the frequency content of the acceleration response increases as the
crack grows and is highest just before failure. As the crack grows,
there is increasing contact between the cracked surfaces of the
link that causes rattling. This rattling results in the increased fre-
quency content seen in Fig. 15. It is also interesting to note that

Fig. 14 Change in transmissibility with appearance and progressive growth of cir-
cumferential crack to failure in sway bar link under tension-tension fatigue loading:
undamaged „—…, initial crack „---…, progression 1 „· · · ·…, progression 2 „-.-.-…, just be-
fore failure „-�-�-�…, and after failure „-°-°-…

Fig. 15 Increase in the frequency content of the link response as the fatigue crack
grows toward failure: undamaged link „—…, partially grown crack „---…, and just before
failure „· · · ·…
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Table 2 Changing velocity restoring force areas and transmissibility index with the appearance and progress of circumferential
crack in sway bar link

Undamaged

Crack
not

visible
2500
cycles

Crack
visible
5000
cycles

Progression
1

10,000 cycles

Progression
2

12,500 cycles

Progression
3

15,000
cycles

Just
before
failure
17,500
cycles

Restoring
force
area

�m2 /s3�

0.054 0.0605 0.0692 0.0755 0.0776 0.092 0.0840

DIk
— 0.0608 0.2844 0.2650 0.8613 1.6123 0.4549

Fig. 16 Empirical regression model relating estimated change in transmissibility to
change in restoring force area for experimental circumferential crack damage in sway
bar link: damage indicator „—… and damage model „---…

Fig. 17 Correlation of damage growth rate „change in transmissibility… with applied
load intensity factor demonstrating analogy of developed damage growth model to
Paris crack law; experimental circumferential fatigue crack damage in sway bar link
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after complete failure, the restoring force seems to become simply
connected again. There is actually no direct transmission of mo-
tion through the link, but rather motion to the top accelerometer is
transmitted through the structure of the fatigue test system. This
transition of the restoring force is an indicator of the approach and
occurrence of failure of the link. Table 2 lists the areas of the
velocity restoring forces with the progress of the crack along with
the damage index in Eq. �13� for the frequency range from
5 Hz to 15 Hz.

The two indicators in Table 2 were used to develop the empiri-
cal regression model �Fig. 16� for predicting the rate of change of
transmissibility with damage:

d��T�
dN

= C	�T	m � 	��RFarea�	n �17�

where m=0.9, n=0.4, and C=5.6822. The empirical model �right
hand side of Eq. �17�� should produce the rate of change of the
damage indicator, �T=DIk, in this case, the real part of the natural
log of the transmissibility measurement. Figure 16 shows that the
empirical model �dashed line� follows the same trend as the dam-
age indicator �solid line�; hence, this empirical damage growth

model predicts the growth of damage and the associated damage
indicator. It should be noted that the x axis of Fig. 16 starts at
2500 cycles. The reason for this is that Eq. �17� gives the rate of
change of transmissibility with number of cycles and the second
measurement was made after 2500 cycles of load.

It was stated earlier that the empirical damage growth models
�Eq. �16�� are similar to the crack growth laws, e.g., Paris law �Eq.
�14��. Paris et al. �1,2� developed the power law in Eq. �14� based
on the common observation of the linear relation between the
plots of crack growth rate against the range of stress intensity
factor on log-log scales for a number of metal alloys. Along simi-
lar lines, the developed empirical damage growth model �Eq.
�17�� can be written as

d��T�
dN

= C�	�T	 � 	��RFarea�	n/m�m = C�Km �18�

where

Fig. 18 EDM crack in front sway bar link
Fig. 19 Progressive growth of EDM crack to failure in sway
bar link under tension-tension fatigue loading: „a…–„e…

Fig. 20 Change in velocity restoring force with progressive growth of EDM crack to
failure in sway bar link under tension-tension fatigue loading: initial EDM crack „—…,
progression 1 „---…, progression 2 „· · · ·…, and just before failure „-.-.-…
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�K = �	�T	 � 	��RFarea�	n/m� �19�

can be thought of as the load intensity factor, which is a function
of both the load and damage states. Taking the log of Eq. �18�
gives

log�d��T�
dN

� = m log��K� + log C �20�

Equation �20� implies that the plot between the change in the
damage indicator and the load intensity factor on log-log scales
should be a straight line. Figure 17 shows this plot for the sway

bar link result presented earlier. There is scatter in the data that is
expected due to the well-known variability in fatigue behavior
�Grandt �20��, but the general trend is linear. This result simply
shows that the empirical damage growth models developed in this
paper are analogous to crack growth power laws with an impor-
tant difference: Only global measurements of load and damage at
the component level are needed to generate the models in Eq.
�16�.

4.2 Electrical Discharge Machining Notch. EDM was used
to create a notch in the front sway bar link located toward the

Fig. 21 Change in transmissibility with progressive growth of EDM crack to failure in
sway bar link under tension-tension fatigue loading: initial EDM crack „—…, progres-
sion 1 „---…, progression 2 „· · · ·…, and just before failure „-.-.-…

Fig. 22 Empirical regression model relating estimated change in transmissibility to
change in restoring force area for experimental EDM crack damage in sway bar link:
damage indicator „—… and damage model „---…
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center of the bar just inside of the weld at the lower end. The
notch was 1 /5000th of an inch deep and 3 /1000th of an inch wide
�Fig. 18�. This link was fatigue tested by subjecting it to an initial
tensile load of about 7000 N. Sine sweep and random inputs were
used to characterize the growth of damage in the link and the
associated test parameters are given in Table 3.

The link was subjected to blocks of 2500 cycles of a 0.15 mm
amplitude cyclic load at a frequency of 5 Hz with sine sweep and
random tests conducted between the cyclic loading blocks. The
cyclic load corresponded to a module load range of about 7500 N.
The loading blocks were continued during the initiation and
growth of the crack in the notch to failure. Figure 19 shows the
progressive growth of the crack to failure in pictures. Figures 20
and 21 show the progressive changes in the restoring forces and
the transmissibility across the link as the crack grows. The change
in the velocity restoring force area with the growth of the crack is
similar to the first case of the circumferential fatigue crack. Table
4 lists the changing areas of the velocity restoring forces with the
progressive growth of the crack along with the damage index in
Eq. �13� for the frequency range of 5–15 Hz.

The two indicators in Table 4 were used to develop an empirical
regression model �Fig. 22� for predicting the rate of change of
transmissibility with loading and damage:

d��T�
dN

= C	�T	m � 	��RFarea�	n �21�

where m=0.5, n=0.1, and C=0.3565. As with the previous cases,
the empirical model �dashed line� follows the same trend as the
damage indicator �solid line in Fig. 22�. The plot between the
change in the damage indicator and the load intensity factor on
log-log scales also showed a linear relationship in this case.

There are differences between the models and number of cycles
to failure for the two crack mechanisms. Some of the causes for
the differences in the models and failure time are given below:

�1� The initial tensile loads were different—6000 N for the
weld crack case and 7000 N for the EDM crack case.

�2� The load ranges were different—6000 N for the weld crack
case and 7500 N for the EDM crack case.

�3� The crack mechanism was different in the case of the EDM
notched link.

�i� The crack growth was governed primarily by the ma-
terial properties of the link itself rather than the weld

properties, as was the case with the first link. The
greater fatigue strength of the link material was the
reason for the significantly greater number of cycles
until failure, even with a larger cyclic load range.

�ii� The load redistribution �growth in restoring force area�
was also significantly less in the case of the EDM
notch damage �Fig. 20�, as can be seen in Table 4. This
difference affects the constant n, which determines the
effect of load redistribution on the growth of damage.

4.3 Validation of Developed Empirical Regression Models.
Crack growth prediction models have been developed for two
different crack mechanisms. In order to demonstrate that the mod-
els actually predict the growth of damage �in this case, the rate of
change of transmissibility with damage�, multiple tests were run
for the same material properties, geometries, loading, and crack
mechanisms. If the crack growth models are the same for such
tests, then it can be stated with confidence that such empirical
relations can be used for damage prognosis.

A limited number of sway bar links were available for running
the fatigue tests. Because the fatigue failure only occurred at the
lower �input� weld of the links, the weld on the other side was
undamaged. Consequently, the link was flipped, gripped at the top
by the broken end �Fig. 23�, and then fatigue tested to reuse each
link available for testing. One accelerometer was placed on the

Table 3 Parameters for sine sweep and random inputs; EDM
notch link

Input type
Amplitude

�mm�

Frequency
content

�Hz�

Sampling
frequency

�Hz�
Test length

�s�

Sine sweep 0.05 0–15 2000 100
Random 0.05 rms 0–30 2000 100

Table 4 Changing velocity restoring force areas and transmissibility index with the growth of EDM crack in sway bar link

Initial
EDM
crack

After
2500
cycles

After
5000
cycles

After
7500
cycles

After
10,000
cycles

After
12,500
cycles

After
15,000
cycles

After
17,500
cycles

After
20,000
cycles

After
22,500
cycles

After
25,000
cycles
—just
before
failure

Restoring
force
area

�m2 /s3�

0.0251 0.0258 0.0264 0.0280 0.030 0.0316 0.0333 0.0343 0.0349 0.0391 0.0278

DIk
— 0.0297 0.0263 0.0421 0.0263 0.0426 0.0273 0.0147 0.0405 0.0412 0.3216

Fig. 23 Fatigue testing of opposite weld of failed sway bar link
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lower end and the other was placed on the central rod, as shown in
Fig. 23. Three such front sway bar links were tested by subjecting
them to an initial tensile load of about 5500 N. Blocks of
2500 cycles of a 0.10 mm amplitude cyclic load at a frequency of
5 Hz were used to fatigue test the links. This displacement corre-
sponded to a cyclic load range of about 8000 N. Sine sweep and
random tests �Table 5� were conducted between the cyclic
loading.

Table 6 lists the changing areas of the velocity restoring forces
along with the damage index in Eq. �13� for the frequency range
of 5–15 Hz. It should be noted that unlike the previous cases, the
velocity restoring force area actually decreases as the damage
progresses. The boundary condition in this case is different be-
cause one end is fixed in the grips of the test system, whereas it
was attached via a fixture in the previous cases allowing some
motion of the top end. In addition, the dynamics of the top weld

are also missing in the present case.
The two indicators in Table 6 were used to develop an empirical

regression model �Fig. 24� for predicting the rate of change of
transmissibility with damage:

d��T�
dN

= C	�T	m � 	��RFarea�	n �22�

where m=1.1, n=0.02, and C=1.15. The empirical model �dashed
line� follows the same trend as the damage indicator �solid line in
Fig. 24�. The relationship between damage growth rate and load
intensity factor is again linear �Fig. 25�. It should be noted that the
parameters in Eq. �22� are different from those in Eq. �17� as the
dynamics of the two links are different because the upper weld is
missing in the latter link and it is gripped at the rod rather than at
the end as in the earlier tests.

The tests were repeated for the other two links and the damage
growth model of Eq. �22� was used to predict the change in the
damage indicator based on transmissibility �Eq. �13�� with the
appearance and growth to failure of a fatigue crack in the weld.
Figures 26 and 27 show the results. It is clear that for the same
component, material, boundary conditions, loading, and damage
mechanism, there exists an empirical relationship involving the
load and damage indicators that predicts the growth of damage to
failure. The only errors in the prognoses in Figs. 26 and 27 are
offsets, which can be attributed to the variability in the placement
of the links in the test system, variability in the loading, and the
fact that all three links had different usage levels; the first two

Table 5 Parameters for sine sweep and random input; sway
bar link with one failed end

Input type
Amplitude

�mm�

Frequency
content

�Hz�

Sampling
frequency

�Hz�
Test length

�s�

Sine sweep 0.05 0–15 2000 100
Random 0.05 rms 0–30 2000 100

Table 6 Changing velocity restoring force areas and transmissibility index with the growth of
fatigue crack in the weld location of the front sway bar link with one failed end

Undamaged

After
2500
cycles

After
5000
cycles

After
7500
cycles

After
10,000
cycles

After
12,500

cycles—just
before failure

Restoring
force
area

�mm3 /s2�

0.0136 0.0137 0.0125 0.0107 0.0093 0.0045

DIk
— 0.864 1.1977 1.0748 0.0768 0.7923

Fig. 24 Empirical regression model relating estimated change in transmissibility to
change in restoring force area for experimental fatigue crack damage in sway bar link
with one failed end: damage indicator „—… and damage model „---…
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links were 14 years old and had been extensively tested in full-
vehicle tests and the last link was new and had never been tested
prior to the fatigue testing. This difference in usage is also the
primary reason that the damage indicator �or damage� grows dif-
ferently for the three links, but the same empirical model predicts
the growth of damage once it has initiated. It should be noted that
the small value of n suggests that the load redistribution has rela-
tively little effect on the growth of damage in this case.

Such empirical models can be developed for different mechani-
cal fatigue damage mechanisms, such as bushing degradation,

loose bolts, etc. This extension of the modeling technique is pos-
sible because the empirical damage growth models presented in
this paper are based on global measurements at the component
level and estimates of changes in loads and damage indicators due
to damage, and as such are not limited to a particular damage
mechanism unlike the various crack laws.

5 Conclusions
It was shown that mechanical damage growth prognosis can be

achieved by combining loads �restoring force areas� and damage

Fig. 25 Correlation of damage growth rate „change in transmissibility… with applied
load intensity factor demonstrating analogy of developed damage growth model to
Paris crack law; experimental circumferential crack damage in sway bar link with one
failed end

Fig. 26 Empirical regression model in Eq. „22… predicting growth of experimental
fatigue crack damage in second sway bar link with one failed end: damage indicator
„—… and damage model „---…

Journal of Applied Mechanics MARCH 2008, Vol. 75 / 021017-13

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�transmissibility� indicators to develop empirical damage evolu-
tion models similar to the Paris law for crack growth. Such mod-
els can be developed for specific mechanical system/component,
loading, boundary conditions, geometry, and damage mechanism
combinations. Fatigue tests to failure were run on multiple auto-
motive sway bar links and damage models were developed for
different crack mechanisms. One crack mechanism was a fatigue
crack initiated in a weld through fatigue testing and the second
mechanism was a seeded crack via an EDM notch. Multiple links
were tested under the same conditions of loading, geometry,
boundary conditions, and damage mechanism to demonstrate the
existence of one damage law for a specific combination of the
previously mentioned variables. The analogy to crack power laws
was further strengthened by the straight line relationship between
the damage growth rate and the load intensity factor on log-log
scales.

Nomenclature
a 	 half crack length

A, B 	 constant amplitudes of discrete system
response

C, m, n 	 coefficients of empirical damage evolution
model

DIk 	 damage index based on real part of natural log
of transmissibility

Fs 	 sampling frequency
N�x�t� , ẋ1�t�� 	 nonlinear forces in suspension

N 	 number of cycles
Nf 	 number of frequencies

Tij��� 	 transmissibility function between degrees of
freedom i and j

xk�t� 	 displacement of degree of freedom k
ẋk�t� 	 velocity of degree of freedom k
ẍk�t� 	 acceleration of degree of freedom k
X��� 	 Fourier transform of response at input fre-

quency �
Y 	 dimensionless Paris law parameter
Z 	 constant of integration
� 	 applied stress

�T 	 change in transmissibility

�RFarea 	 change in restoring force area
���� 	 characteristic polynomial of a discrete MDOF

system
� 	 cyclic frequency
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Moving surface loads cause crack extension at a constant subcritical speed between
perfectly bonded materials. The materials differ only in thermal properties and are gov-
erned by coupled thermoelastic equations that admit as special cases Fourier heat con-
duction and thermal relaxation with one or two relaxation times. Convection from the
crack surfaces is allowed and for the latter two models is itself influenced by thermal
relaxation. A dynamic steady state of plane strain is assumed. Fourier heat conduction is
shown to dominate away from the crack edge at low speeds; solution behavior at the
crack edge at high speeds depends upon the particular thermal model. Thermal mismatch
is seen to cause solution behavior similar to that for the isothermal bimaterial, and so
insight into the case of general material mismatch is provided.
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1 Introduction
Joined dissimilar elastic materials occur as a geological forma-

tion �1� and as a structural element �2�. Study of interface cracks
�3–5� is important in assessing behavior of such material systems.
Interface crack studies such as these are sufficient for isothermal
materials in equilibrium. If rapid crack extension occurs and
coupled thermoelasticity �6� governs, however, material dissimi-
larity is characterized not only by mass density �, shear modulus
�, and Poisson’s ratio v but also by thermal conductivity k, coef-
ficient of volumetric expansion �v, and specific heat at constant
volume cv. Indeed, if thermal relaxation �7� occurs, then thermal
relaxation times�s� � arise and may also differ.

The effects of thermal parameters were illustrated by Ref. �8�
by considering two perfectly bonded half-spaces whose properties
�� ,� ,v� were identical, but whose thermal properties �k ,�v ,cv ,��
differed. While in a hypothetical limit case, it is known that two
materials may indeed differ more in some properties than in others
�9�. For generality, a coupled thermoelasticity formulation that
included Fourier and thermal relaxation models as special cases
was employed. Crack surface convection was assumed to be neg-
ligible, however. Thus, although solution response was found to
be similar to that for the isothermal bimaterial, crack surface tem-
peratures were �asymptotically� the same, except when a model
had two relaxation times.

When bonding fails, the resulting crack surfaces will likely �10�
exhibit small breaks and crystal misalignments in a region of mi-
croscale order. That is, a de facto thin layer exists on the surfaces
that, while not influencing the bulk properties noted above, can
modify surface heat flow. As discussed in Ref. �11� surface con-
vection in the presence of a surface layer can be characterized by
a Biot number; it depends on layer thickness and �effective� layer

conduction that follows from its nature and that of the external
medium. This approach has been adopted �12� for the problem of
sliding by a rough indentor.

The present work, therefore, models crack surface heat convec-
tion by assigning each crack face a property that is related to a
Biot number, the external medium being the atmosphere in the
crack gap. The effect of thermal relaxation on convection is in-
cluded, and heat flow from one half-space to the other across both
the interface bond and crack gap-surface layer system is continu-
ous, i.e., neither is a heat source or sink. As in Ref. �8� the half-
spaces are originally joined only over half of their interface and
are at rest at uniform temperature. Moving loads are then applied
on the separated faces, causing debonding. The loads vary neither
with time nor in the direction parallel to the crack edge. Therefore,
a dynamic steady state of plane strain arises in which loads and
interface crack edge move at the same subcritical constant speed.

The study begins with consideration of the related general prob-
lem of a growing semi-infinite interface separation zone defined
by discontinuities in displacement and temperature. The govern-
ing equations include the special cases of Fourier heat conduction
�6� and thermal relaxation models with, respectively, one �13� and
two �14� thermal relaxation times. Asymptotic forms that are most
valid �a� away from the crack edge extending at low speed or �b�
near the crack edge extending at high speed are extracted and
inverted analytically. The inversions are used to solve exactly the
interface crack problem for each of the three models. The solu-
tions indicate that thermal mismatch alone can produce solution
response similar to that for the isothermal bimaterial interface
crack. Moreover, it is found that Fourier heat conduction domi-
nates the former case �a�, but that behavior in �b� is very sensitive
to the particular model employed. Finally, crack face
convection—especially that influenced by thermal relaxation—
leads to a difference in temperature of the faces. The solution
process is similar to those used in dynamic steady state studies of
thermoelastic sliding contact �15,16� and debonding of a ther-
moelastic layer from a rigid substrate �17�. Insight arising from
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the study of Stoneley signals due to point sources at the interface
of perfectly bonded thermoelastic half-spaces �18,19� is also em-
ployed.

2 Governing Equations for General Problem
Two isotropic, homogeneous linearly thermoelastic half-spaces,

denoted as Solid 1 and Solid 2, occupy regions y�0 and y�0,
respectively, where �x ,y ,z� are Cartesian coordinates. Properties
�� ,� ,�� for the two solids are identical, but the thermal properties
�ki ,cvi ,�iv ,�i�, i=1,2 differ. The solids are perfectly bonded for
x�0 and initially at rest at a common uniform �absolute� tempera-
ture T0. Shear and normal forces are then applied to the half-space
faces in the region x�0 of separation and moved toward the edge
�x=0� of the bonded region at constant subcritical speed v. This
action causes the separation zone to extend in the positive x di-
rection. The loads vary neither with time nor z, so that a dynamic
steady state of plane strain ensues for which the separation zone
also extends with speed v. Therefore, by attaching the Cartesian
coordinates to the moving zone edge, the time derivative assumes
the form −v�x, where ��x ,�y� signify �x ,y� differentiation and
�x ,y� are the independent variables. The governing coupled equa-
tions of thermoelasticity for y�0 can then be written as

��2 − c2�x
2��uxi,uyi� + ��x,�y��m�i − �viDi

II	i� = 0 �1a�

hi�
2	i + c�x� 
i

�vi
Di�i + Di

I	i� = 0 �1b�

�2 = �x
2 + �y

2 �i = �xuxi + �yuyi �1c�

��xi

�yi

�zi
� = �� a a − 2 1

a − 2 a 1

a − 2 a − 2 1
�� �xuxi

�yuyi

− �viDi
II	i

� �xyi = ���xuyi + �yuxi�

�1d�
Equations �1a� and �1b� partly uncoupled to give

�a�2 − c2�x
2��i − �vi�

2Di
II	i = 0 �2a�

��2 − c2�x
2���yuxi − �xuyi� = 0 �2b�

In Eqs. �1� and �2� i= �1,2�, ��xi ,�yi ,�zi ,�xyi� are the nonzero
stresses, �2 is the Laplacian in �x ,y�, and �uxi ,uyi ,	i ,�i� are, re-
spectively, the �x ,y� components of displacement, change in ab-
solute temperature, and dilatation. The D operators are given by

F: Di = Di
I = Di

II = 1 �3a�

I: Di = Di
I = 1 − chi

I�x Di
II = 1 �3b�

II: Di
I = 1 − chi

I�x Di = Di
II = 1 − chi

II�x �3c�
Here, F denotes the Fourier model �6�, and I and II denote, re-
spectively, the single-relaxation time model �13� and double-
relaxation time model �14�. Equations �1�–�3� also exhibit param-
eters

m =
1

1 − 2�
a = 1 + m c =

v
vr

vr =	�

�
�4a�


i =
�T0

�cvi
�vi

2 hi =
ki

cvi
	��

�hi
I,hi

II� = vr��i
I,�i

II� �4b�

In particular, vr is the rotational wave speed in both solids, and 
i
and hi are the dimensionless coupling constant and characteristic
length for coupled thermoelasticity.

Parameters hi
I ,hi

II are additional characteristic lengths that arise
because of the thermal relaxation times �i

I ,�i
II. Data �6,9,20,21�

indicate that �i
I��i

II for Model II and that

vr 
 O�103� m/s hi 
 O�10−9� m 
i 
 O�10−2�

��i
I,�i

II� 
 O�10−13� s �5�

In light of Eq. �4b�, therefore, hi�hi
I�hi

II.
Along the interface y=0 of Solids 1 and 2, the matching con-

ditions

�xy1 − �xy2 = 0 �y1 − �y2 = 0 k1�y	1 − k2�y	2 = 0 �6a�

ux1 − ux2 = U�x� uy1 − uy2 = V�x�, 	1 − 	2 = �x� �6b�

Functions U ,V , represent discontinuities in displacement and
temperature in the extending separation zone, and so vanish iden-
tically for x�0. The last condition in Eq. �6a� signifies that, as
noted above, neither the interface bond nor the crack gap-surface
layer system is a heat source or sink. The functions are also as-
sumed to be continuous almost everywhere for x�0 and, in par-
ticular, to vanish for x→ �0− ,−��. The fields ux1 ,uy1 ,	1 and
ux2 ,uy2 ,	2 themselves should be continuous and bounded above

as 	x2+y2→� for y�0 and y�0, respectively. In the Appendix,
the exact solution to this problem in integral transform space is
presented. This is used to treat the interface crack extension prob-
lem, as outlined below.

2.1 Crack Extension: Far Field. Consider the zone of sepa-
ration to be a crack driven by moving shear and normal line loads
of infinite extent parallel to the z axis. Thus, U ,V , are unknown
but additional conditions are now imposed for y=0, x�0:

��xy2,�y2� = − �PS,PN���x + L� �k1�y + �1D1
I �	1 = �k2�y

+ �2D2
I �	2 �7a�

F: Di
I = 1 �I,II�: Di

I = 1 − chi
I�x i = �1,2� �7b�

The last condition in Eq. �7a� reflects the assumption that crack
surface heat convection is also subject to thermal relaxation. Con-
stants �1 ,�2 are the convection parameters for the crack surfaces
�y=0− ,0+ �. It is noted that if the crack surface layer thickness
t1 , t2 were specified, then �1t1 /k1 ,�2t2 /k2 would be Biot numbers
�11�. In Eq. �7a�, PS , PN are force magnitudes and L is the fixed
distance between load and crack edge maintained in the dynamic
steady state. An asymptotic solution to this problem valid for �x�
�h*=max�h1 ,h2� is obtained by using forms of Eqs. �A2�–�A10�
in the Appendix valid for �h*p��1, 0�c�c. In particular, Eq.
�A2c� behaves as

�i
+ 
	 ai




− chip
�i

− 
	 a

ai

 �di,di

I,di
II� 
 1 ai


 = a + 
i

�8�

In view of Eq. �5�, it is noted that ai

�a�1. Use of Eq. �8� in Eq.

�A4a� and its counterpart for the transforms of �xy2 ,�y2 gives
forms that yield analytical results upon substitution into the inver-
sion integral in Eq. �A1�. Substitution of these into Eq. �7� gives
for x�0 the set of partly coupled singular integral equations for
dU /dx ,dV /dx ,:

RU



2BS
�
�vp��

−�

0
dU

dt

dt

t − x
+

KD


S


dV

dx
+

2�S

�12

S

	�c

�
x

0
dt

	t − x

= −
PS

�
��x + L� �9a�

−
KD


S


dU

dx
+

RV



2S
�
�vp��

−�

0
dV

dt

dt

t − x
−

K�N

 �12

S

	�c

�
−�

x
dt

	x − t

= −
PN

�
��x + L� �9b�
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�k1�1�2 + k2�2�1� = 0 �9c�

In Eq. �9�, �vp� signifies Cauchy principal value integration, and

RU

 = A2


R1

 + A1


R2

 RV


 = R1

 + R2


 S
 = A1

 + A2


 D
 = A1

 − A2




�10a�

�S

 = k2

�v1h1

a1

 + k1

�v2h2

a2

 �N


 = k2A2

�v1h1

a1

 − k1A1


�v2h2

a2



�12 =
�1�2

k1�1 + k2�2
�10b�

Ri

 = 4Ai


B − K2 Ai

 =	1 −

c2

ai

 �i =	 ai




hia
i = �1,2�

�10c�

Terms RU

 ,RV


 are functions of the Rayleigh type �20� and vanish
for

c = � �cU

 ,cV


� 0 � �cU

 ,cV


� � 1

Equation �6� thus becomes

c* = min�cU

 ,cV


� �11�

The solution to Eq. �9c� is

 = 0 �12�

Equations �9a� and �9b� are now coupled only in �dU /dx ,dV /dx�
and, after Refs. �15–17�, its eigenfunctions are �−x��, where

� = − 1
2 � i� �� = tanh−1 2KD


	B

	RU

 RV



�13�

It can be shown that � is real for 0�c�c*. Solutions to Eqs. �9a�
and �9b� are then

dU

dx
= −

2P

�
S
 	RU




2KD

	B

sinh2 �� sin ���x + L�

+	 B

RU



cosh2 ��

��x + L�
	 L

�x�
cos �� �14a�

dV

dx
=

2P

�
S
 	RV




2KD


sinh2 �� cos ���x + L�

−
1

	RV



cosh2 ��

��x + L�
	 L

�x�
sin �� �14b�

These results in turn give for y=0, x�0

��xy
0 ,�y

0� =
P

�
	L

x

cosh ��

x + L
�	RU




B
cos �,	RV


 sin ��
�15a�

	0 =
2c2KP�12

�RV

 	BD


RU

 � k1
1

�2a1



�v2

�v1

+
k2
2

�1a2



�v1

�v2
�	 L

�x�
cosh �� sin �

��x + L�
�15b�

In Eqs. �14� and �15�, superscript 0 signifies evaluation for y=0,
and

P =	 1

RV

 PN

2 +
B

RU

 PS

2 � = tan−1 PN

PS
	 RU




BRV

 � = � + � ln

L

�x�

�16�

These asymptotic analytic results are independent of thermal re-
laxation parameters �hi

I ,hi
II�, i.e., Fourier heat flow governs. Equa-

tions �14� and �15� also exhibit, via the logarithmic term in �, the
rapid oscillations in traction and crack surface opening common
to interface cracks in isothermal equilibrium studies �3–5�.

2.2 F-Model Crack Extension: Near Field. A result valid
for �x��h0=min�h1 ,h2� is obtained from Eqs. �A2�–�A10� by us-
ing asymptotic forms valid for �h0p��1, 0�c�c*. Use of the
inversion integral in Eq. �A1� and

�i
+ 
 1 −


i

2chip
�i

− 
	 a

− chip
�di,di

I,di
II� = 1 �17�

gives for x�0 equations

R

2B�
�vp��

−�

0
dU

dt

dt

t − x
− �1 − A�

k2�v1 + k1�v2

c2�k1 + k2��
�vp��

−�

0
dt

t − x

= −
PS

�
��x + L� �18a�

R

2A�
�vp��

−�

0
dV

dt

dt

t − x
+

K�1 − A�
2A

k2�v1 − k1�v2

c2�k1 + k2�
 = −

PN

�
��x + L�

�18b�

�k1�2 + k2�1� = C0 �18c�

In this case, C0 is an arbitrary real constant, and parameters

R = 4AB − K2 A =	1 −
c2

a
�19�

Equation �18� admits the three identical eigenfunctions 1 /	−x.
Use of these in Eq. �18� gives dU /dx ,dV /dx that are unbounded
as x→−� unless C0�0. Thus, Eq. �12� holds again and Eqs.
�18a� and �18b� give for x�0:

�dU

dx
,
dV

dx
� = − �B

PS

�
,A

PN

�
�2	L

�R

1

�x + L�	− x
�20�

For y=0, x�0 quantities,

��xy
0 ,�y

0� = �PS,PN�
	L

�	x

1

x + L
�21a�

	0 =
2c3KB

�RA

1 − A

k1 + k2
� k1
1

�v1h1
+

k2
2

�v2h2
�PN

�
tan−1 	L

x
�21b�

The single Rayleigh function R vanishes for c= �cR, 0�cR�1,
so that Eq. �A10� now gives

c* = cR �22�

Equations �20� and �21� indicate that near-field solution behavior
for the Fourier model is essentially identical to that for crack
extension in a single material. That is, thermal mismatch by itself
did not give rise to the oscillatory behavior seen in Eqs. �14� and
�15�. As in that case, there is no discontinuity in temperature be-
tween the two crack faces.

2.3 Model I Crack Extension: Near Field. A result valid for
�x��h0=min�h1 ,h2 ,h1

I ,h2
I � can be obtained from Eqs. �A2�–�A10�

by considering asymptotic forms valid for �h0p��1, 0�c�c*.
Use of
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2�i
� 
 	�1 + 	ali

I�2 + 
ili
I � 	�1 − 	ali

I�2 + 
ili
I li

I =
hi

I

hi

�23a�

�di,di
I� 
 − chi

Ip di
II = 1 �23b�

in Eqs. �A1� and �7� gives for x�0 the coupled equations

RU

2c2BS�
�vp��

−�

0
dU

dt

dt

t − x
+

KD

c2S

dV

dx
−

2�S

aS�
�vp��

−�

0
dt

t − x

= −
PS

�
��x + L� �24a�

−
KD

c2S

dU

dx
+

RV

2c2S�
�vp��

−�

0
dV

dt

dt

t − x
+

K�N

aS
 = −

PN

�
��x + L�

�24b�

�12
2c4�U

aS

dU

dx
− �12

c4K�V

aS�
�vp��

−�

0
dV

dt

dt

t − x
+ ��12

c2�T

S

+ �1h1
I� = 0 �24c�

In Eq. �24� parameters

S = �k1A1
+A1

− + k2A2
+A2

−�S1S2 + k1P1Q2 + k2P2Q1 +
c4

a2S12

�25a�

D = k1A1
+A1

− − k2A2
+A2

− +
c4

a2D12 �25b�

RU = k1A1
+A1

−S1�8BQ2 − K2S2� + k2A2
+A2

−S2�8BQ1 − K2S1�

+ K2 c4

a2S12 �25c�

1
2RV = 2BS1S2�k1A1

+A1
− + k2A2

+A2
−� − K2�k1P1�2BQ2 − S2�

+ k2P2�2BQ1 − S1�� − 2B
c4

a2S12 �25d�

�S = k1A1
+A1

−S1�v2 + k2A2
+A2

−S2�v1 �N = k1P1�v2 − k2P2�v1

�25e�

�U =
k1
1l1

I

�v1
Q2 −

k2
2l2
I

�v2
Q1 �V =

k1
1l1
I

�v1
S2 +

k2
2l2
I

�v2
S1

�25f�

�T = k1S2�S1A1
+A1

− + A2
+P1� + k2
2l2

I c4�v1

a2�v2
�25g�

In Eqs. �24� and �25�,

S12 = k1
1l1
I �v2

�v1
+ k2
2l2

I �v1

�v2
D12 = k1
1l1

I �v2

�v1
− k2
2l2

I �v1

�v2

�26a�

�12 = �2h2
I − �1h1

I �26b�

Si = Ai
+ + Ai

− Pi = Si
2 − Qi Qi = Ai

+Ai
− + A2 i = �1,2�

�26c�

The term A is defined in Eq. �19�. Coefficients in Eq. �24� corre-
spond to those in Eqs. �9� and �18�; their different form arises due

to cancellation in their ratios of a common factor �A1
+−A1

−��A2
+

−A2
−�. So Rayleigh functions �RU ,RV�=0 at, respectively, c

= � �cU
I ,cV

I �, where 0� �cU
I ,cV

I ��cm=min�1,	a /�1
+ ,	a /�2

+�.
Function S is of the Stoneley type �1� and vanishes c= �c12

I , 0
�c12

I �cm when S��cm��0. Thus, Eqs. �A10� gives

S��cm� � 0:c* = min�c12
I ,cU

I ,cV
I � �27a�

S��cm� � 0:c* = min�cU
I ,cV

I � �27b�

Equations �24a�–�24c� fully couple �dU /dx ,dV /dx ,� and the
eigenfunctions are �−x��, where

� = �0,−
1

2
� i�� �� = tanh−1 K	MSD

MC
�28�

Use of this result gives for x�0 the solutions

dU

dx
= −

c2SP

2�

MU
	D

	MSMC

sinh �� sin ���x + L�

+	 L

�x�
cosh �� cos �

��x + L� � − 2�12
c8KSPS

�a2MC
�S�V��x + L�

�29a�

dV

dx
= c2S

P

�
sinh �� cos ���x + L� −	 L

�x�
cosh �� sin �

��x + L� �
�29b�

 = − �12
c6SP

a�

CU
	D

	MSMC

sinh �� sin ���x + L�

+	 L

�x�
cosh �� cos �

��x + L� � − �12
c6KSRU�VPS

2�aBMC
��x + L�

�29c�

Results for y=0, x�0 are

��xy
0 ,�y

0,	0�

=
P

�
	L

x

1

x + L
	MCD

MS
cos �,

RV

2
sin �,

c6

a
K�V sin ��

�30�

In Eqs. �29� and �30� parameters

P =	�2Q0PS

MC
cosh ���2

+ � PN

KD
sinh ���2

�

= tan−1 2Q0
	D

	MSMC

PS

PN
�31a�

� = � + � ln
L

�x�
�31b�

In Eqs. �29�–�31� parameters

MC = RVQ0 − �12
c6

a2K2�VQ MS = �12c
2�2

c4

a2�U�N + �TD�
+ �1h1

I SD �32a�

MU = �12c
2�2

c4

a2K2�V�N + RV�T� + �1h1
I RVS CU = K2�VD

− RV�U �32b�
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Q = 2D�S −
RU

2B
�N Q0 = �12c

2�RU

4B
�T + 2

c4

a2�U�S� + �1h1
I RUS

4B

�32c�

Equation �28� gives real � when 0�c�c*. Equations �29� and
�30� are clearly influenced by thermal relaxation, and the rapid
oscillations seen in Eqs. �14� and �15� arise again. However, when
PS�0 value �=0 now gives terms that are both nonsingular and
nonoscillatory. Moreover, discontinuity in temperature of the
crack faces occurs.

2.4 Model II Crack Extension: Near Field. A result valid
for �x��h0=min�h1 ,h2 ,h1

I ,h2
I ,h1

II ,h2
II� can be obtained from Eqs.

�A2�–�A10� by considering asymptotic forms valid for �h0p��1,
0�c�c*. Use of

2�i
� 
 	�1 + 	ali

I�2 + 
ili
II � 	�1 − 	ali

I�2 + 
ili
II li

II =
hi

II

hi

�33a�

di
I 
 − chi

Ip �di,di
II� 
 − chi

IIp �33b�

in Eqs. �A1� and �7� gives for x�0 the coupled equations

RU

2c2BS�
�vp��

−�

0
dU

dt

dt

t − x
+

KD

c2S

dV

dx
−

2c�S

aS�
�vp��

−�

0
d

dt

dt

t − x

= −
PS

�
��x + L� �34a�

−
KD

c2S

dU

dx
+

RV

2c2S�
�vp��

−�

0
dV

dt

dt

t − x
+

cK�N

aS

d

dx
= −

PN

�
��x + L�

�34b�

�12
2�U

cS

dU

dx
− �12

K�V

cS�
�vp��

−�

0
dV

dt

dt

t − x
+ ��12

c2�T

S
+ �1h1

I�d

dx

= 0 �34c�

In Eq. �34� coefficients S ,D ,RU ,RV ,�S ,�N are again defined by
Eqs. �25� and �26b�, but Eq. �33a� holds instead of Eq. �23a� and
Eq. �26a� is replaced by

S12 =
k1
1

�v1h1
�v2h2

II +
k2
2

�v2h2
�v1h1

II D12 =
k1
1

�v1h1
�v2h2

II −
k2
2

�v2h2
�v1h1

II

�35�

In addition, Eqs. �25f� and �25g� for �U ,�V ,�T are replaced by

�U =
k1
1Q2

�v1h1
−

k2
2Q1

�v2h2
�V =

k1
1S2

�v1h1
+

k2
2S1

�v2h2
�36a�

�T = k1S2�S1A1
+A1

− + A2
+P1� + k2
2

c4�v1h1
II

a2�v2h2
�36b�

Rayleigh functions �RU ,RV�=0 for c= � �cU
II ,cV

II�, respectively,
where 0� �cU

II ,cV
II��cm=min�1,	a /�1

+ ,	a /�2
+�, and Stoneley

function S=0 for c= �c12
II �0�c12

II �cm� when S��cm��0. There-
fore, Eq. �A10� gives

S��cm� � 0:c* = min�c12
II ,cU

II,cV
II� �37a�

S��cm� � 0:c* = min�cU
II,cV

II� �37b�

Equations �31a� and �31b� fully couple dU /dx ,dV /dx ,d /dx,
three eigenfunctions �−x�� are again defined by Eq. �28�, and so-
lutions for x�0 are

dU

dx
= −

c2SP

2�

MU
	D

	MSMC

sinh �� sin ���x + L�

+	 L

�x�
cosh �� cos �

��x + L� � − 2�12
c4KSPS

�aMC
�S�V��x + L�

�38a�

dV

dx
= cS

P

�
sinh �� cos ���x + L� −	 L

�x�
cosh �� sin �

��x + L� �
�38b�

d

dx
= − �12

cSP

�

CU
	D

	MSMC

sinh �� sin ���x + L�

+	 L

�x�
cosh �� cos �

��x + L� � − �12
cSRUK�VPS

2�BMC
��x + L�

�38c�

For y=0, x�0 results are

��xy
0 ,�y

0� =
P

�
	L

x

1

x + L
	MCD

MS
cos �,

RV

2
sin �� �39a�

	0 = − cK�V
P	L

��
�

x

�
sin �dt
	t�t + L�

�39b�

Equations �28� and �31� for �P ,� ,� ,�� still hold, but Eq. �32� is
replaced by

MC = RVQ0 − �12
c2

a
K2�VQ MS = �12c

2�2

a
�U�N + �TD�

+ �1h1
I SD �40a�

MU = �12c
2�2

a
K2�V�N + RV�T� + �1h1

I RVS CU = K2�VD

− RV�U �40b�

Q = 2D�S −
RU

2B
�N Q0 = �12c

2�2

a
�U�S +

RU�T

4B
� + �1h1

I RUS

4B

�40c�

Yet again, Eq. �28� gives real � for 0�c�c*. Equations �38� and
�39� exhibit the oscillations also seen in Eqs. �14�, �15�, �29�, and
�30�. As in the Model I result, additional terms appear, which
exhibit neither singular nor oscillatory behavior, and a jump in the
crack face temperatures exists. The temperature quantities � ,	0�
in Eqs. �29c� and �30� are singular at the crack edge. The integral
of Eq. �38c�, however, is finite for x→0− and for x→0+ the
integral in Eq. �39b� gives the finite result

�

	L

sin �

cosh ��

3 Some General Observations
It is seen that the three thermal models �F, I, II� give rise to four

asymptotic results. These results arise from the solution to sets of
three singular integral equations for the crack separation gradients
�dU /dx ,dV /dx� and either the temperature difference  between
the two crack faces, or its gradient d /dx. Results �12� and �13�
of Sec. 2.1 show that Fourier conduction governs the dynamic
steady state behavior in the crack plane for low crack speeds �0
�c�c*� except near the crack edge ��x /h*�
1�. The three equa-
tions �19� fully couple only �dU /dx ,dV /dx�, thereby giving rise
to two complex conjugate eigenfunctions, and oscillatory singular
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behavior of the interface stresses and temperature change, c.f. the
isothermal equilibrium interface crack. Moreover, no difference in
the temperature change on the two crack faces occurs.

In view of Eq. �5� the Sec. 2.1 results are the most robust, but
numerical studies in thermal fluids �22� show that the effects of
thermal relaxation are most pronounced near a concentrated
source. The results of Sec. 2.2–2.4 valid near the crack edge
��x /h*��1� for high crack speeds �0�c�c*� seem to bear this
out. In particular, coupling produces three eigenfunctions. The
Fourier Model F results �20� and �21� in Sec. 2.2 produce the
degenerate case of three identical real eigenfunctions, yet main-
tain the asymptotically negligible difference in the temperature of
the two crack faces seen in the far field. However, interface
stresses are singular but nonoscillatory, and interface temperature
change is both nonoscillatory and finite at the crack edge. The
nonoscillatory behavior shows that thermal mismatch effects are
dominated by the elastically identical nature of the two half-
spaces.

Section 2.3 results �29� and �30� for Model I �one relaxation
time for each half-space� differ from those for Sec. 2.2. The three
eigenfunctions are distinct, with one being unity and the other two
being complex conjugates. Therefore, so long as shear loading is
present, both stress and temperature along the interface exhibit
terms that are singular and oscillatory, and terms that are neither.
Moreover, a difference in crack face temperatures occurs. Section
2.4 results �38� and �39� for Model II �two relaxation times for
each half-space� exhibit behavior to that for Sec. 2.3. However,
both differences in crack face temperature and interface tempera-
ture are finite at the crack edge.

Summary
The results presented indicate that for low �0�c�c*� exten-

sion speeds, thermal mismatch by itself gives rise to solution be-
havior near, but not at, the edge of an extending interface crack
similar to that seen for the isothermal bimaterial crack. Fourier
heat conduction dominates, whether thermal relaxation exists or
not, and the temperature change generated on the two crack faces
is �asymptotically� identical.

For high �0�c�c*� extension speeds, thermal mismatch when
thermal relaxation is present gives rise to solution behavior very
near the crack edge that is, again, similar to that for the isothermal
bimaterial analysis. Moreover, a difference in crack face tempera-
ture occurs. In the single-relaxation time model �13�, interface
temperature change is singular at the crack edge, but the change is
finite for the double-relaxation time model �14�.

Only for the near-field Fourier model �6� is thermal mismatch
somewhat of a negligible effect, and solution behavior is similar
to that for crack growth in a purely isotropic material. Model
behavior is closer to the far-field result in that difference in the
temperature of the crack faces is negligible. It is closer to that for
double-relaxation time in that change in interface temperature is
finite at the crack edge.

These observations have analogies in the transient response to
an interface thermomechanical source of perfectly bonded mate-
rials that differ only in thermal property �19�. In particular, Stone-
ley signals for times after loading that exceed thermoelastic char-
acteristic times are dominated by Fourier heat conduction. For
times that are smaller than the characteristic times, Stoneley sig-
nals for the Fourier, single- and double-relaxation time models
exhibit distinctive behavior.

The present work considered crack faces governed by convec-
tion and thermal relaxation. When convection is negligible, results
in Ref. �8� showed that, save for the double-relaxation time model
at high speeds, �asymptotic� difference in crack face temperature
is also negligible. Both these and the present effort show that
debonding of materials that differ only in thermal properties can
produce behavior similar to that for isothermal bimaterials. Both
efforts are phenomenological in that distinctive model behavior is
illustrated through mathematical results. They can therefore pro-

vide a basis for calculations that would illustrate the relative im-
portance of these behaviors and thus, perhaps, the validity of the
models.

Appendix: General Transform Solution
After Refs. �23,24�, the bilateral Laplace transform and inverse

operations are introduced:

f̂ =�
−�

�

f�x�exp�− px�dx f�x� =
1

2�i � f̂ exp�px�dp �A1�

Here transform variable p is imaginary in the transform integral,
and integration in the inversion integral is over a Bromwich con-
tour. Application of the transform integral to Eq. �2� gives the
eigenfunctions and eigenvalues

exp�− p�Ai
��y�� exp�− p�B�y�� � =

	− p
	p

�A2a�

Ai
� = 	1 − ci�

2 B = 	1 − c2 ci
� =

1
	a

�i
�c �A2b�

2�i
� =	1 +	− adi

I

chip
�2

−

idi

II

chip
�	1 −	− adi

I

chip
�2

−

idi

II

chip

�A2c�

In Eq. �A2� i= �1,2�, and for the Fourier Model F and relaxation
Models I and II,

F: di
I = di

II = 1 �A3a�

I: di
I = di

II = 1 − chi
Ip �A3b�

II: di
I = 1 − chi

Ip di
II = 1 − chi

IIp �A3c�
Application of the transform integral to Eqs. �1�, �3�, �4�, and �6�
in light of Eq. �A2� then gives the displacement and temperature
change transforms for the general problem. For present purposes,
it is sufficient to display the results for solid 2 �y�0�:

� ûx2

�ûy2

	̂2

� =
1

S� 1 1 B

A2
+ A2

− 1

− �2
+ − �2

− 0
��C+ exp�p�A2

+y�
C− exp�p�A2

−y�
CB exp�p�By�

� �A4a�

�C+

C−

CB
� = � 2U+ 2KV+ +

2U− 2KV− −

− KS/2B S 0
�� Û

�V̂

̂/c2
� �A4b�

�Û,V̂,̂� =�
−�

0

�U,V,�exp�− pt�dt �A4c�

In Eq. �A4b� matrix coefficients

U+ = �1
+�2

−A1
−�k1A1

+ + k2A2
−� − �1

−�2
−A1

+�k1A1
− + k2A2

−�

+ k1�1
+�1

−A2
−�A1

+ − A1
−� �A5a�

V+ = �1
−�2

−�k1A1
− + k2A2

−� − �1
+�2

−�k1A1
+ + k2A2

−� + k1�1
+�1

−�A1
+ − A1

−�

+ = k1�1
+A1

+�A1
− + A2

−� − k1�1
−A1

−�A1
+ + A2

−� − k2�2
−A2

−�A1
+ − A1

−�

U− = �1
−�2

+A1
+�k1A1

− + k2A2
+� − �1

+�2
+A1

−�k1A1
+ + k2A2

+�

− k1�1
+�1

−A2
+�A1

+ − A1
−�

V− = �1
+�2

+�k1A1
+ + k2A2

+� − �1
−�2

+�k1A1
− + k2A2

+� − k1�1
+�1

−�A1
+ − A1

−�
�A5b�
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− = k1�1
−A1

−�A1
+ + A2

+� − k1�1
+A1

+�A1
− + A2

+� + k2�2
+A2

+�A1
+ − A1

−�

S = �k1�1
+�1

− + k2�2
+�2

−��A1
+ − A1

−��A2
+ − A2

−� − �1
+�2

−�k1A1
+ + k2A2

−�

��A1
− + A2

+� + �1
−�2

+�k1A1
− + k2A2

+��A1
+ + A2

−� + �1
+�2

+�k1A1
+

+ k2A2
+��A1

− + A2
−� − �1

−�2
−�k1A1

− + k2A2
−��A1

+ + A2
+� �A5c�

In Eqs. �A4� and �A5�

�i
� =

pqi
�

�vidi
II qi

� = 1 − �i
�2 qi

+qi
− =


idi

chip
K = c2 − 2 �A6�

In Eq. �A6� i= �1,2�, and for the Fourier Model F and thermal
relaxation Models I and II

F: di = di
II = 1 �A7a�

I: di = 1 − chi
Ip di

II = 1 �A7b�

II: di = di
II = 1 − chi

IIp �A7c�

The real parts of the exponential arguments must be non-negative
if Eq. �A4a� is to be bounded as �y�→�. Because radical B is
positive real for �c��1, its term satisfies the condition if we re-
quire that Re�	�p��0 in the p plane with branch cuts Im�p�
=0, Re�p��0 and Im�p�=0, Re�p��0, respectively. The situation
is more complicated for the Ai

� terms. Nevertheless, it can be
shown for real p that branch points �c�=	a /�i

� of radical Ai
� are

real and that

0 � �i
− � 1 � �i

+
	a

�i
+ � 1 �A8a�

chip �
m + 
i


ili + m�li
I − 1�

:
	a

�i
− � 1 �A8b�

In Eq. �A8� i= �1,2� and dimensionless parameters �li , li
I� are de-

fined as

F: li = li
I = 0 �A9a�

I: li = li
I =

hi
I

hi
�A9b�

II: li =
hi

II

hi
li
I =

hi
I

hi
�A9c�

Thus for real p, positive real arguments of Eq. �A4a� are guaran-
teed when

c � c* = min�1,
	a

�1
+ ,

	a

�2
+� �A10�

For the moment, therefore, Eq. �A10� defines a subcritical sepa-
ration zone extension rate.
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Analytical Solutions for a Family
of Gaussian Impinging Jets
Various types of impinging jet flows are analytically modeled using inviscid free Gaussian
jet solutions superimposed with experimentally fitted boundary layer models. Improved
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1 Introduction

Impinging jets have extensive practical applications ranging
from industrial processing, such as mixing, heating/cooling, or
drying, to environmental flows related to ventilation or the simu-
lation of downburst winds. The mathematical modeling of the
flow field has therefore both fundamental and practical impor-
tance.

A three region modeling method for round impinging jets was
put forward and the flow field of the wall jet region was broadly
investigated �1–3�. The normalized radial velocity profile derived
by Glauert �1� and verified by Bakke �2� is often cited in many
references. However, it cannot be used to predict the flow field in
the impinging jet region.

Yih �4� obtained a solution of steady rotational flow equations
of an inviscid fluid describing rapidly varying flows such as flows
from a two-dimensional channel or a circular tube toward a sink.
A similar solution for an impinging jet was found by Phares et al.
�5�. They derived a double layer summarized infinite series solu-
tion that includes surface integrals to be computed numerically.
The solution can be considered as an analytical-numerical mixed
solution.

In 1998, Lee et al. �6� derived a pure analytical solution for a
simple Gaussian impinging jet and applied the solution to the flow
field research for helicopter vanes.

Herein, we improve the analytical model of Lee et al. and ex-
tend it to the general case of a family of Gaussian impinging jets.
The extended solution is more adequate for modeling an extended
set of engineering problems involving round impinging jets �7�. A
direct solution for the steady rotational flow equations subject to
the inhomogeneous boundary conditions is obtained. An approxi-
mate method for computing the oscillatory series of the solution is
proposed and proved suitable for general oscillatory series. Based
on this, a complete flow field of the Gaussian impinging jets can
be readily computed. The approximate solution for the oscillatory
series accelerates convergence and adds robustness to the model
when compared to previous ones.

2 Formulation

2.1 Governing Equations and Boundary Conditions. In ac-
cordance with the formulation of Lee et al. �6�, all lengths are
nondimensionalized with jet radius R* �or half-width of the slot
B0

* for the plane jet� and all velocities are nondimensionalized
with the maximum influx velocity wm. Flow field pressures are
nondimensionalized by the maximum dynamic pressure at the jet
centerline. To simplify notations, the dimensional variables are
marked with *. The dimensionless variables are given as

r =
r*

R* z =
z*

R* for round jets and

�1�

x =
x*

B0
* z =

z*

B0
* for plane jets

u =
u*

wm
w =

w*

wm
p =

2p*

�wm
2 �2�

The governing equations written in stream function and vortic-
ity form are

�2�

�z2 +
�2�

�r2 −
1

r

��

�r
= − r2��r,z� �3�

��

�r
= rw

��

�z
= − ru �4�

� =
1

r
� �u

�z
−

�w

�r
� �5�

in cylindrical-polar coordinates for the round jet case and

�2�

�z2 +
�2�

�x2 = − ��x,z� �6�

��

�x
= w

��

�z
= − u �7�

� = � �u

�z
−

�w

�x
� �8�
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in Cartesian coordinates for the plane jet case.
The boundary conditions can be approximately expressed ac-

cording to a finite domain �5,6�, but here, precise expressions can
be used for an infinite domain:

� =�
o

r

rw�dr at z = � �9�

� = 0 at z = 0 �10�

� = 0 at r = 0 �11�

��

�r
= 0 at r = � �12�

for the round jet case and

� =�
o

x

w�dx at z = � �13�

� = 0 at z = 0 and at x = 0 �14�

��

�x
= 0 or � =�

o

z

− u�dz at x = � �15�

for the plane jet case.

2.2 Influx Velocity Profiles. Several empirical expressions
are available to describe the jet influx velocity profile as a func-
tion of the nozzle shape, the spacing between the jet outlet and the
impinging surface, and the flow state. The following Gaussian jet
profile:

− w� = e−r2/k �16�

is chosen because Eq. �9� has an exact solution with this influx
velocity profile and the spacing distance �H*� can be related to the
final solution as well.

Firstly, in order to find a relation between Gaussian jets and a
jet from a round pipe, their flow rates can be compared as follows.

Considering an influx flowing out from a pipe with r=1 and the
uniform velocity distribution �step profile, w�=−1 for r�1, w�

=0 elsewhere�:

Q0 =�
0

1

− 2�rdr = − � �17�

Using the influx profile of Eq. �16� and integrating from r=0 to
�, the flow rate corresponding to the Gaussian jet is obtained:

Q =�
0

�

w�2�rdr =�
0

�

− e−r2/k2�rdr = − k� �18�

Obviously, the Gaussian influx velocity profile �16� provides k
times the unit flow rate �kQ0�.

Secondly, a turbulent jet produces flow entrainment into the
shear layer, hence increasing its flow rate as it moves downward.
In order to take into account the entrainment effects into the in-
viscid model, the relation between the flow rate multiplier �k� and
the distance from the jet to the impinging plate �H*� should be
specified.

According to Abramovich’s experiments for a free round turbu-
lent jet �Ref. �8�, pp. 20–26� the parameter k and the distance from
the jet outlet to a downstream flow station �H*� can be related by

k =
Q

Q0
= 2.2�a1

H*

R* + b1� �19�

where a1 is a jet shape coefficient, typically taking a1
=0.06–0.08; b1 is an empirical constant chosen as b1=0.294; H*

is the axial distance from the jet exit.
Hence, in order to include the entrainment effects, a flow rate Q

�=kQ0� can be used as the influx. The parameter k can be regarded
as a linkage between the infinite and finite domains and intro-
duced into the model.

For the same reason, the following influx profile is chosen for
the plane jet case:

− w� = �1 + 2x/k�e−2x/k �20�

and an empirical expression for k is given by �Ref. �8�, pp. 27–28�

k =
Q

Q0
= 1.2�a2H*

B0
* + b2 �21�

where a2 is the jet shape coefficient, a2=0.10–0.11; b2 is an em-
pirical constant, b2=0.41.

2.3 Analytical Solutions for a Family of Gaussian Imping-
ing Jets. An infinite series solution is obtained for the steady
axial-symmetric flow �Eq. �3�� given the inhomogeneous mixed
boundary conditions �Eqs. �9�–�12�� with the influx velocity pro-
file �Eq. �16��.

�a� The stream function is

� = −
k

2
�1 − e−r2/k� + r2e−r2/k	

n=1

�

cnLn
1�2r2

k
�e−�8n/kz �22�

with

cn =

�
0

�

�k/2��1 − e−r2/k�Ln
1�2r2/k�e−r2/krdr

�
0

�

r2e−2r2/k�Ln
1�2r2/k��2rdr

=
�− 1�n

n � n!
�23�

where Ln
1�x� are associated Laguerre polynomials.

As r and z are small, the solution shows that �
zr2.
The velocity solutions are as follows:
�b� The radial velocity is

u�r,z� = re−r2/k	
n=1

�

cnLn
1�2r2

k
��8n/ke−�8n/kz �24�

�c� The axial velocity is

w�r,z� = − e−r2/k + 2�1 −
r2

k
�e−r2/k	

n=1

�

cnLn
1�2r2

k
�e−�8n/kz

+ re−r2/k	
n=2

�

cne−�8n/kz�Ln
1�2r2/k�

�r
�25�

For the particular cases of the plate surface �z=0� and the jet
centerline �r=0�, the associated velocities are obtained as

u�r,0� = re−r2/k	
n=1

�

cnLn
1�2r2

k
��8n

k
�26�

w�0,z� = − 1 + 2	
n=1

�

�− 1�n−1e−�8n/kz �27�

Lee et al. �6� provided a derivation for their solution of a simple
Gaussian jet �k=1 in Eq. �16�� impinging onto a plate. In the
following, we extend the result to the general case �k chosen
arbitrarily�.

Derivation. First, using Eq. �16� as the influx condition at z
=�, the influx stream function can be expressed by
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�� =�
0

r

r�− e−r2/k�dr = −
k

2
�1 − e−r2/k� �28�

The initial azimuthal vorticity distribution is defined by Eq. �5�
as

� = �� = −
1

r

�w�

�r
= −

2

k
e−r2/k �29�

The conservation laws for axial-symmetric flow require � to be
constant on streamlines �6�, so that

� = H��� �30�

The stream function � still satisfies Eq. �3� but now takes the
special form

�2�

�z2 +
�2�

�r2 −
1

r

��

�r
= − r2H��� �31�

The azimuthal vorticity in the undisturbed jet at upstream infin-
ity is given by Eq. �29�. Making use of Eqs. �28� and �30�, we
have

H���� = −
4

k2��� +
k

2
� �32�

H���� is invariant throughout the flow field. Hence, Eq. �31�
simplifies to a linear partial differential equation:

�2�

�z2 +
�2�

�r2 −
1

r

��

�r
=

4r2

k2 �� +
k

2
� �33�

Letting �=�+k /2, Eq. �33� yields

�2�

�z2 +
�2�

�r2 −
1

r

��

�r
=

4r2

k2 � �34�

A particular solution of this equation for � is given by Eq. �28�.
The homogeneous equation can be solved by the method of sepa-
ration of variables.

Letting �=F�r� ·G�z�, then

F
�2G

�z2 + G
�2F

�r2 −
G

r

�F

�r
−

4r2

k2 FG = 0 �35�

The above equation can be rewritten into

1

F

�2F

�r2 −
1

rF

�F

�r
−

4r2

k2 = −
1

G

�2G

�z2 = 	 �36�

This leads to the following group equations:

G� + 	G = 0 �37�

F� −
1

r
F� − �4r2

k2 + 	�F = 0 �38�

Letting t=2r2 /k and 	=−8n /k in Eq. �38�, we have

tFt� + �n −
t

4
�Ft = 0 �39�

Further, let Ft=Et�t /2�e−t/2. Then Eq. �39� becomes

tE� + �2 − t�E� + �n − 1�E = 0 �40�
Equation �40� is a standard Laguerre associated differential

equation. The solutions of Eq. �40� are given by the associated
Laguerre polynomials �Ref. �10�, pp. 155–156�. By means of
backward substitutions, we obtain

Fn = Ln
1�2r2

k
� r2

k
e−r2/k for 	 = −

8n

k
n = 1,2,3, . . . �41�

Substituting this into Eq. �37� yields

Gn = ane−�8n/kz + bne�8n/kz �42�

Gn must be a bounded function so that bn is equal to zero.
Combining Eqs. �28�, �41�, and �42�, a complete solution in the
form of a series of associated Laguerre polynomials Eq. �22� is
obtained �in that equation, cn=an /k�.

Boundary conditions �9�, �11�, and �12� are satisfied automati-
cally. For the wall boundary condition �Eq. �10��, setting z=0 in
Eq. �22�, multiplying by e−r2/kLm

1 �2r2 /k�, then integrating from r
=0 to �, the orthogonality of Laguerre polynomials leads to a set
of equations and yields the coefficients cn �Eq. �23��.

Finally, substituting Eq. �22� into Eq. �4� yields the radial and
axial velocities �Eqs. �24� and �25��, as we claimed.

Setting k=1, Eq. �22� becomes the simple Gaussian impinging
jet solution obtained by Lee et al. �6�, which is a particular case in
the solution family. Note that their expression for coefficients cn
= �−1�n / �n+1� is not correct �most likely a print error�, conducting
to a divergent solution.

2.4 Analytical Solutions for Plane Impinging Jets. For the
plane impinging jets, a solution similar to Eq. �22� exists as well.
A simpler analytical solution is found and presented herein:

�a� Stream function:

� =
1

k
�k − �k + x�e−2x/k���k + z�e−2z/k − k� �43�

It is easy to see that �
xz as x and z are small.
�b� Velocity in the x direction:

u�x,z� = �1 − �1 +
x

k
�e−2x/k��1 +

2z

k
�e−2z/k �44�

�c� Velocity in the z direction:

w�x,z� = ��1 +
z

k
�e−2z/k − 1��1 +

2x

k
�e−2x/k �45�

For the particular cases of the impinging plate surface and the
jet centerline, we have the associated velocities expressed as

u�x,0� = 1 − �1 +
x

k
�e−2x/k �46�

w�0,z� = �1 +
z

k
�e−2z/k − 1 �47�

Derivation. Let �=CX�x� ·Z�z�. Then integrating Eq. �20� from
0 to x, we obtain

X�x� = Xz=� =�
0

x

wdx = k − �k + x�e−2x/k �48�

Due to symmetry,

Z�z� = Zx=� = −�
0

z

udz = �k + z�e−2z/k − k �49�

Substituting the above results into the stream function, we ob-
tain

� = C�k − �k + x�e−2x/k���k + z�e−2z/k − k� �50�
Note that the velocity at the infinite centerline should reach

unity, i.e.,

− w�z = �,x = 0� = 1 �51�

This leads to C=1 /k, and Eq. �43� is obtained.
The above solution can be verified to satisfy both the differen-

tial equations �6�–�8� and the boundary conditions �13�–�15� by
direct substitution.
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3 Implementation for Round Impinging Jets
It is necessary to develop a method to obtain a stable conver-

gent result for the flow field parameters from Eqs. �22�, �24�, and
�25�, because all of the parameters are expressed by oscillatory
series. A front n term averaged method is put forward and found
efficient for the flow field computations. The method is based on
the following theorem.

THEOREM. For a given convergent oscillatory series, the average
values of the first n terms constitute a series that will converge to
the same value as that of the original series and the first n term
average value series has a faster convergence speed.

The detailed proof of the above theorem is given in the Appen-
dix.

Lee et al. �6� showed that the solution of a simple Gaussian
impinging jet converges with terms decaying as n−1/4. The present
method produces a much faster converging rate of n−1. For ex-
ample, if we search for solutions of accuracy of 1%, we need 108

terms in the original series while we need 100 terms only in the
front n term average series. Moreover, as it will be demonstrated
later, even if the original series is not convergent, the average
value series can still provide a “convergent value.”

Figure 1 illustrates this method with a comparison between the
original velocity series solution and its front n term average value
solution. Accordingly, the maximum relative error of the front n
term average value series is less than 1 /n.

Fortunately, all parameters, including the average value series,
can be expressed by recurrence formulas, which allow us to obtain
the desired accuracy. Here are the recurrence formulas used in the
implementation �Eq. �53� can be found in a mathematical hand-
book, see Ref. �9�, p. 156�:

cn+1 = − cn
n

�n + 1�2 �52�

L1
1 = − 1 L2

1 = 2�2r2

k
− 2�

Ln
1 =

n

n − 1
�2�n − 1� −

2r2

k
�Ln−1

1 − �n − 1�2Ln−2
1 � n = 3,4,…

�53�

�L1
1

�r
= 0

�L2
1

�r
=

8r

k

�Ln
1

�r
=

n

n − 1
�2�n − 1� −

2r2

k
� �Ln−1

1

�r
− �n − 1�2�Ln−2

1

�r
�

−
4nr

�n − 1�k
Ln−1

1 n = 3,4, . . . �54�

The origin O�0,0� is a singular point for Eq. �3�. The solution
displays this feature from Eq. �27�, since the axial velocity is not
convergent at the origin:

w�0, 0� = − 1 + 2 − 2 + ¯ , i.e., w1�0, 0� = 1 w2�0, 0�

= − 1, . . . wn�0, 0� = �− 1�n−1 �55�

With the aid of the front n term averaged method, a convergent
value w�0,0�=0 is obtained, which is its physical velocity value.

For any other points in the domain, stable convergent flow field
parameters can be obtained using the above method.

4 Boundary Layer Approximation
Comparing the solution of plane stagnation point flow and that

of axial-symmetric stagnation flow �Ref. �10�, pp. 152–159�, one
can see that the boundary layer thickness of a plane stagnation
flow is 1.2 times of that of the axial symmetric:


plane
* = 1.2
asym

* �56�
The above expression can be used to determine the boundary

layer depth for plane jet impingement as long as the boundary
layer depth for the round jet case has been determined or vice
versa.

Based on impinging jet experiments �7�, the following empiri-
cal expressions were obtained to describe the dimensionless
boundary layer depth for the round impinging jet:


 =
4.5

�Rej

� r

us
for local Rel � 2.5 � 104 �57�

�r
�


= − 1.95 ln� �

0.16R* +
278

Rejusr�

� for Rel  2.5 � 105

�58�

where Rej is the jet Reynolds number, Rej =wjet
* R* /2�; Rel is the

local Reynolds number, Rel=us
*r* /�; � is the roughness height

�in m�; � is the kinematical viscosity �in m2 /s�; us
* is the inviscid

surface velocity �in m/s�.

Fig. 1 Comparison of front n term average value series
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Note that r, 
, and us above are dimensionless variables.
Figure 2 shows a comparison of the empirical expressions �57�

and �58� with the boundary layer depth experimental data. When
the Reynolds number is less than a critical value �Rej �2.5
�104�, the flow is Reynolds number dependent. Above one order
of the critical value, an asymptotic state is reached where the
boundary layer increases with the surface roughness.

The displacement depths can be estimated by �Ref. �11�, pp.
30–36�


disp = 
/3 for a laminar flat plate boundary layer �59�

and


disp = 
/7 for a turbulent flat plate boundary layer �60�
The radial velocity profiles of the impinging jet for the com-

bined model �inviscid solution plus the boundary layer approxi-
mation� are presented in the following two subsections.

4.1 Laminar Boundary Layer Case. We divide the z domain
into three regions ��0

�, �

4
 /3�, and �4
 /3
��� and obtain
the combined velocity profiles by the following steps:

�a� We displace the inviscid velocity profile up a distance of

disp from the ground surface.

�b� In the outer region, we use the displaced inviscid velocity
profile:

u�r,z� ⇐ u�r,z − 
/3� for z � 4
/3 �61�
�c� In the region of z= �

4
 /3�, we use a parabolic equation

to smooth the curve to the maximum value of u. The para-
bolic equation is subjected to the following three con-
straints:

u�r, 4
/3� ⇐ u�r, 
� �u/�z�r, 4
/3� ⇐ �u/�z�r, 
�

�u/�z�r, 
� = 0 �62�
This yields

u�r,z� = A1z2 + B1z + C1 �63�

with

A1 =
3uz��r, 
�

2

B1 = − 3uz��r, 
�

C1 = u�r,
� +
4

3

uz��r, 
� �64�

and the maximum velocity

umax�r,
� = u�r,
� −
1

6

uz��r,
� �

1

2
�u�r,

2

3

� + u�r,
��

�65�

where

uz��r,z� = − re−r2/k	
n=1

�

cn

8n

k
Ln

1�2r2

k
�e−��8n/k�z �66�

�d� Within the boundary layer �z�
�, we use the polynomial
approximation of Homman’s boundary layer velocity pro-
file �data from Ref. �10�, p. 156, Tables 3–4�:

u�r,�� = �− 1.43�4 + 5.39�3 − 7.45�2

+ 4.49��umax�r,
� for � � 1 �67�

where �=z /
.

Fig. 2 Comparison of the impinging jet boundary layer depths
between empirical models and roughness test data „� is the
roughness height of the sandpaper…

Fig. 3 Streamlines of a plane impinging jet model: „a… present
model „−� corresponds to Rubel’s � value…; „b… calculated by
Rubel and Phares et al., cited from Ref. †5‡
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4.2 Turbulent Boundary Layer Case. Similar to the laminar
case, we divide the z domain into three parts ��0

�, �


8
 /7� and �8
 /7
��� and obtain the radial velocity profiles by
the following steps:

�a� We displace the inviscid velocity profile up a distance of

disp from the ground surface.

�b� In the outer region, z= �8
 /7
��, we use the displaced
inviscid velocity profile:

u�r,z� ⇐ u�r,z − 
/7� for 8
/7 � z �68�
�c� In the region of z= �

8
 /7�, we use a parabolic equa-

tion to smooth the curve to the maximum value of u. The
parabolic equation is subjected to the following three
constraints:

u�r, 8
/7� ⇐ u�r,
� �u/�z�r, 8
/7� ⇐ �u/�z�r,
�

�u/�z�r,
� = 0 �69�
This yields

u�r,z� = A2z2 + B2z + C2 �70�
with

A2 = 7uz��r,
�/2
 B2 = − 7uz��r,
�

C2 = u�r,
� +
24

7

uz��r,
� �71�

and the maximum velocity

umax�r,
� = u�r,
� −
1

14

uz��r,
� �

1

2
�u�r,

6

7

� + u�r,
��

�72�
�d� Within the boundary layer �z�
�, we use Eq. �67� or any

similar expressions for turbulent boundary layers.

5 Results and Comparisons
Example 1. Plane impinging jets. Equation �27� can be used to

calculate the values of stream functions with different k. Figure
3�a� is an example of the mapped streamlines in a 5�5 domain
�set k=1.16�, which matches the numerical and analytical-
numerical mixed results, see Fig. 3�b�, cited from Ref. �5�.

According to the definition �see Eq. �2��, the normalized pres-
sures on the surface of the impinging jet plate can be determined
from Bernoulli’s equation, i.e.,

p�x, 0� = 1 − u2�x, 0� �73�

where u�x ,0� is the surface radial velocity from the inviscid
model.

Phares et al. �5� compared the surface pressure distribution for
a plane impinging jet with previous experiments including these

Fig. 4 Comparison of surface pressure distribution „the error
bar is for the experiments…

Fig. 5 Laminar circular impinging jet streamlines „−� is used…

Fig. 6 An axis symmetric impinging jet combined model with
updraft and downdraft: „a… influx profile; „b… contours of stream
function
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by Kumada and Mabuchi �12�, and Beltaos and Rajaratnam �13�.
The present model shows improved fitting of the experimental
data �see Fig. 4�. In Fig. 4, k=1.55 is chosen for the present model
according to the fully developed jet condition of H* /B0

*=12.
Example 2. Axis symmetric impinging jets.
�a� Streamlines for a laminar axis symmetric impinging jet. For

a laminar flow in a circular pipe �Hagen-Poiseuille flow�, the ve-
locity profile is parabolic about the centerline, and the average
velocity is equal to half of the centerline velocity �Ref. �11�, p.
116�:

ū =
1

2
umax �74�

where umax is the centerline velocity. Hence, k=1 /2 is chosen to
model the laminar impinging jet, i.e., the influx velocity into the
domain at z=� is

w� = − e−2r2
and �� = −

1

4
�1 − e−2r2

� �75�

Figure 5 shows the streamlines of the laminar impinging Gauss-
ian jet based on the analytical model.

�b� Vortex trace for a turbulent axis symmetric impinging jet.
The trace of vortices in the mixing layer of a turbulent impinging
jet is determined using the analytical model. In order to generate a
vortex trace using this inviscid model, a mixed influx velocity
profile is used with both down flow and up flow in conjunction
with the inviscid model. The boundary between the two opposite
direction velocities can be considered the trace of the ring vorti-
ces. The following influx velocity function has the mixed shape
with a velocity value of 0 at r�1:

w� = − 2e−2r2
+ e−4r2/3 �76�

This combined influx velocity profile, shown in Fig. 6�a�, cor-
responds to twice a downdraft of k=0.5 and an updraft of k
=0.75.

The stream function is now expressed by 2��0.5�−��0.75�,
where ��k� is defined by Eq. �22�. The corresponding streamlines
are shown in Fig. 6�b�.

Fig. 7 Velocity comparison „model: k=2.05; test: H* /D*=4, cited from Ref.
†17‡…: „a… radial velocity profiles; „b… axial velocity profiles
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�c� Velocity field of experimental axis symmetric impinging jets.
In order to compare the combined model with experiments, the
parameter k is determined according to the particular test condi-
tions. Landreth and Adrian �14� presented the velocity profiles of
a turbulent circular jet based on PIV measurements �D*

=26.9 mm, H* /D*=4, Rej =6564, fluid: water�. Substituting
H* /R*=2H* /D*=8 into Eq. �15�, the parameter k is obtained as

k = 2.2�0.08 � 8 + 0.294� = 2.05 �77�

Therefore, the flow parameters of a Gaussian impinging jet of k
=2.05 are computed and compared with Landreth and Adrian’s
experiments.

Figure 7�a� compares the radial velocity profiles for the
H* /D*=4 case. The inviscid model is modified with a laminar
boundary layer approximation described in Sec. 4.1. It is shown
that the model compares well against the experiments. Figure 7�b�
compares the axial velocity profiles for the same case. It can be
observed that for r* /D* in �0.8, 1.4�, the model and experimental
profiles are consistent. For r* /D*1.6, some negative axial ve-
locity values are observed in the near surface experimental results
that are not reproduced by the model.

Figure 8�a� compares the radial velocity profiles for another
case. The experimental results are from measurements taken with
a boundary layer probe in a small impinging jet facility �7� and
correspond to H* /D*=2 and Rej =23,000. Again, the inviscid
model is modified with a laminar boundary layer approximation
and shows good agreement with the experiments.

Figure 8�b� compares the radial velocity profiles from a larger
jet facility test for H* /D*=2 and Rej =190,000 �7�. Here, the
inviscid model is modified with a turbulent boundary layer ap-
proximation described in Sec. 4.2. While, overall, the model
agreement with the test data is fair, note the difficulty in repro-
ducing the thinner surface layer at this higher Reynolds number,
see also Fig. 2.

�d� Surface pressures of turbulent axis symmetric impinging
jets. For axis symmetric impinging jet cases, the normalized pres-
sures on the surface of the impinging jet plate can be expressed by

p�r, 0� = 1 − u2�r, 0� �78�

where u�r ,0� is the surface radial velocity from the inviscid
model.

Fig. 8 Radial velocity comparisons for turbulent circular impinging jets: „a…
Rej=23000, H* /D*=2; „b… Rej=190000, H* /D*=2.
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Pressure tests were carried out with a small impinging jet facil-
ity �D*=38 mm, Rej =23,000� �7� and compared here with the
model predictions in Fig. 9. While the model shows a more pro-
nounced sensitivity to H* /D* compared to the experiments, the
overall agreement with the experiments is quite good.

Example 3: Annular influx impinging jets. In order to model an
annular jet impingement, the influx velocity profile can be ex-
pressed by multiple Gaussian jet equations, namely, by

− w� = a3e−r2/K1 − b3e−r2/K2 �79�
For a certain influx velocity profile, the radius corresponding to

the maximum velocity �rm� and the maximum deficit velocity
�
w=w��rm�−w��0�� are usually specified. Subject to the con-
strains of w��rm�=−1 and �dw� /dr�r=rm=0, the parameters in Eq.
�79� can be found by solving the following iterations:

K1 = trm K2 = trm/2

t =
rm

ln�2b3/a3�
a3 =

1 − 
w − e2rm/t

1 − erm/t b3 = a3 + 
w − 1 �80�

For example, if 
w=0.8 and rm=0.65 are set, the following
expression based on Eqs. �79� and �80� is found:

Fig. 9 Comparison of the plate surface pressure distribution

Fig. 10 Particular influx velocity profile of an annular jet

Fig. 11 Annular impinging jet „rm=0.35, �w=0.16…: „a… stream-
lines by present model „−� is used…; „b… numerical solution by
Rubel †16‡

Fig. 12 Streamlines for an annular impinging jet with the in-
flux profile shown in Fig. 10 „rm=0.65, �w=0.8…
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− w� = 3.79e−r2/0.661 − 3.59e−r2/0.330 �81�
This particular expression provides reasonable agreement with the
experimental data by Sheen et al. �15�, see Fig. 10.

The two terms of Eq. �81� are used to form two Gaussian im-
pinging jet stream functions �K1=0.661, K2=0.33�, which, when
added together, provide the stream function

� = 3.59��0.33� − 3.79��0.661� �82�

where ��k� is expressed by Eq. �22�.
�a� Comparison with previous numerical and mixed models.

The present model is in good agreement with the numerical flow
field simulated by Rubel �16� for rm=0.35, 
w=0.16, and ��0�
=0. In this case, no flow recirculation zone appears, see Fig. 11.
The recirculation zone is predicted by Rubel’s numerical model
only when a nonzero value of ��0� is specified �16�. The present
model can also predict a recirculation zone when 
w exceeds 0.2
�even up to the maximum 1�, in which case, Rubel’s method be-
comes divergent.

Figure 12 shows the contours of the stream function of the
annular impinging jet for rm=0.65 and 
w=0.8, which are in good
agreement with the analytical-numerical mixed solution by Phares
et al. �5�. For this case, Rubel’s model �16� has no convergent
solution.

�b� Comparison with the experiment by Donaldson and Snede-
ker. Figure 13�a� shows another influx profile estimated from the
Bernoulli equation using the experimental impinging plate surface

pressures by Donaldson and Snedeker �17�. Figure 13�b� shows
the streamlines generated by the present model using the esti-
mated influx profile. The model predicts a stagnation bubble with
the radius comparable to the experiments.

6 Concluding Remarks
An inviscid solution for a family of Gaussian orthogonal im-

pinging jets is derived and it constitutes a base for analytical mod-
eling of the flow field of various real impinging jets. The solution
is robust and extends the analytical model by Lee et al. �6�. A first
n term averaged method is put forward to speed up the conver-
gence of the oscillatory series, thus simplifying the flow field
computations. A new and simpler solution of the plane impinging
jets is also obtained.

The inviscid solutions are then combined with laminar and tur-
bulent boundary layer solutions to model real impinging jets. This
family of combined inviscid-boundary layer solutions compare
well in terms of flow field �streamlines, ring vortex trace, and
velocities� and surface pressure field with experiments for both
laminar and turbulent boundary layers and different Reynolds
numbers. Moreover, an expression for an annular jet profile is
derived. The solutions of several annular impinging jets show
good agreement with numerical, mixed models, and experimental
results.
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Nomenclature
a1, a2 � jet shape coefficients
b1, b2 � empirical constants

B0
* � half-width of plane jet slot, m

D* � diameter of round jet, m
H* � distance between jet outlet and impinging

plate, m
k � flow rate multiplier

p* � pressure, Pa
p � dimensionless pressure, p=2p* /�wm

2

Q � dimensionless flow rate
R* � radius of round jet, m

Rej � Reynolds number of jet flow based on jet di-
ameter D* and jet velocity wm

Rel � local Reynolds number based on radial dis-
tance r* and surface velocity us

*

r*, z* � radial and axial coordinates, m
r, z � dimensionless radial and axial coordinates; r

=r* /R*, z=z* /R*

u*, w* � radial and axial velocities, m/s
us

* � inviscid velocity on impinging plate surface,
m/s

u, w � dimensionless radial and axial velocities, u
=u* /wm, w=w* /wm

rm � radius corresponding to maximum velocity
wm � maximum axial velocities at jet center line,

m/s

w � maximum deficit velocity
x, z � dimensionless plane coordinates; x=x* /B0

*, z
=z* /B0

*

Greek Symbols
� � fluid density, kg /m3

� � kinematical viscosity, m2 /s
� � roughness height of sand paper grain, m

Fig. 13 An annular impinging jet with a large recirculation
ring: „a… influx velocity profile estimated from the surface pres-
sure values of Ref. †8‡; „b… Streamlines „−� is used…
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* � thickness of viscous boundary layer, m

 � dimensionless thickness of viscous boundary

layer

disp

* � displacement thickness of viscous boundary
layer, m


disp � dimensionless displacement thickness
� � stream function
� � vorticity function

Appendix: Proof of Convergence of the Front n Term
Average Value Series

Given a series 	i=1
� ai, let the partial summation of the series be

a sequence:

Sn = 	
i=1

n

ai n = 1,2, . . . �A1�

Then take the average of Sn as a new sequence:

S̄n =
1

n	
i=1

n

Si n = 1,2, . . . �A2�

We want to prove that

�i� if limn→� Sn=S, then limn→� S̄n=S;
�ii� if further SiSi+1�0, i=1,2 , . . ., then cov S̄ncov Sn.

�Here, cov denotes the rate of convergence.�
Proof. To prove �i�, we need to show that

For any �0, there exists an integer N� such that �S̄n−S�
��∀nN�.

From limn→� Sn=S, we know that the sequence is bounded, i.e.,

�Sn − S� � M ∀ n = 1,2, . . . ,�M  0� �A3�

Also, since limn→� Sn=S, for any chosen �0, we can find an
integer N such that

�Sn − S� �
1

2
� ∀ n  N �A4�

Then, for nN,

�S̄n − S� = � 1

n	
i=1

n

Si − S�
=

1

n
�S1 + S2 + ¯ + Sn − nS�

=
1

n
��S1 − S� + �S2 − S� + ¯ + �Sn − S��

�
1

n
��S1 − S� + �S2 − S� + ¯ + �Sn − S��

=
1

n
��S1 − S� + �S2 − S� + ¯ + �SN − S� + �SN+1 − S�

+ ¯ + �Sn − S��

�
1

n
�NM +

1

2
�n − N��� �Eqs.�A3� and �A4� are used�

=
NM

n
+

n − N

2n
� �

NM

n
+

1

2
� �A5�

Now, let

N� = �2NM

�
� + 1 �A6�

where the notation � � represents the largest integer �2NM /�.
Then, it follows from Eq. �A5� that for nN�,

�S̄n − S� �
NM

n
+

1

2
� �

NM

N�
+

1

2
� �

NM

2NM/�
=

1

2
� +

1

2
� = �

�A7�
This proves Part �i�.

Note that for Part �i�, the reverse is not true, i.e., if limn→� S̄n
=S, it is not necessary to have limn→� Sn=S. For example, con-
sider the sequence of S1=−0.1, Sn=0.4+ �−1�n for n�2:
−0.1,1.4,−0.6,1.4, . . . ,0.4+ �−1�n , . . .. It is easy to see that

S̄n =
1

n	
i=1

n

Si = 0.4 �
1

2n
→ 0.4 as n → �

However, Sn is not convergent.
The above counterexample implies that the rate of convergence

of the sequence S̄n is greater than that of the sequence Sn if Sn is
randomly alternating between +M1 and −M2 �M1, M2 are positive
bounded numbers�. It also shows that, conservatively, the rate of

convergence of the sequence S̄n is proportional to n−1 �the above
counter example is the worst case whose terms reach the two
bounded numbers for all n�2�. However, it is not easy to prove
this in general. In the following, we prove Part �ii� under the
assumption that Sn is an alternative sequence about its limit, i. e.,
�Sn−S��Sn+1−S��0.

Without loss of generality, suppose Sn changes sign from n=1

and �Sn−S� is decreasing. Then, it is easy to prove that S̄n is also
an alternative sequence. Further, suppose Sn−S0 and Sn+1−S

�0. Similarly, we have S̄n−S0, and S̄n+1−S�0. Assume that
S0 �if S�0, we can consider the sequence −Sn and the same
argument applies�. Then,

�Sn − S� − �Sn+1 − S� = Sn + Sn+1 − 2S  0 ⇒ Sn + Sn+1  0

�A8�
and

�S̄n − S� − �S̄n+1 − S� = S̄n + S̄n+1 − 2S  0 ⇒ S̄n + S̄n+1  0

�A9�

We want to prove that there exists N̄ such that

F�S̄n, S̄n+1,S� � �S̄n − S� − �S̄n+1 − S� � �Sn − S� − �Sn+1 − S�

� F�Sn,Sn+1,S� �A10�
A direct calculation shows that

F�S̄n, S̄n+1,S�

= �S̄n − S� − �S̄n+1 − S� = S̄n − S + S̄n+1 − S

=
1

n
�S1 + S2 + ¯ + Sn� − S

+
1

n + 1
�S1 + S2 + ¯ + Sn + Sn+1� − S

=
1

n
��S1 − S� + �S2 − S� + ¯ + �Sn−1 − S�� +

1

n
�Sn − S�

+
1

n + 1
��S1 − S� + �S2 − S� + ¯ + �Sn−1 − S��

+
Sn + Sn+1 − 2S

n + 1
�A11�
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There are two cases.

�a� When n is even, �S1−S�+ �S2−S�+ ¯ + �Sn−1−S��0, we
have

F�S̄n, S̄n+1,S� �
Sn − S

n
+

Sn + Sn+1 − 2S

n + 1

� Sn + Sn+1 − 2S for n  N̄

= �Sn − S� − �Sn+1 − S� = F�Sn,Sn+1,S�
�A12�

where N̄ is an integer, satisfying

�SN̄ − S� + �SN̄+1 − S� +
SN̄+1 − S

N̄ − 2
 0 �A13�

which can be reached since Sn, S are bounded, and �SN̄

−S�+ �SN̄+1−S�0 for all n.
�b� When n is odd, �S2−S�+ ¯ + �Sn−1−S��0, we have

F�S̄n, S̄n+1,S� �
2n + 1

n�n + 1�
�S1 − S� +

Sn − S

n
+

Sn + Sn+1 − 2S

n + 1

�
2n + 2

n�n + 1�
�S1 − S� +

Sn − S

n
+

Sn + Sn+1 − 2S

n + 1

=
2

n
�S1 − S� +

Sn − S

n
+

Sn + Sn+1 − 2S

n + 1

� Sn + Sn+1 − 2S for n  N̄

= �Sn − S� − �Sn+1 − S�

= F�Sn,Sn+1,S� �A14�

where N̄ is an integer, satisfying

�SN̄ − S� + �SN̄+1 − S� +
SN̄+1 − 2S1 + S

N̄ − 2
 0 �A15�

which is possible since Sn, S are bounded, and �SN̄−S�+ �SN̄+1
−S�0 for all n. This finishes the proof for Part �ii�.
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Elastic Boundary Layers in
Two-Dimensional Isotropic
Lattices
The phenomenon of elastic boundary layers under quasistatic loading is investigated
using the Floquet–Bloch formalism for two-dimensional, isotropic, periodic lattices. The
elastic boundary layer is a region of localized elastic deformation, confined to the free
edge of a lattice. Boundary layer phenomena in three isotropic lattice topologies are
investigated: the semiregular Kagome lattice, the regular hexagonal lattice, and the
regular fully triangulated lattice. The boundary layer depth is on the order of the strut
length for the hexagonal and the fully triangulated lattices. For the Kagome lattice, the
depth of boundary layer scales inversely with the relative density. Thus, the boundary
layer in a Kagome lattice of low relative density spans many cells.
�DOI: 10.1115/1.2775503�

1 Introduction
Recently, Fleck and Qiu �1� observed elastic boundary layers

near the free edge of three isotropic lattices: the regular fully
triangulated lattice, the semiregular Kagome lattice, and the regu-
lar hexagonal lattice as shown in Fig. 1. They noted that a deep
boundary layer exists for the Kagome lattice under remote tension
or shear, see Fig. 2. In contrast, the fully triangulated and hexago-
nal lattices possess boundary layers of depth on the order of one
unit-cell size. Fleck and Qiu �1� also calculated the reduction in
macroscopic stiffness of a finite-width panel due to the presence
of a compliant boundary layer. The drop in stiffness is significant
for a Kagome lattice, but not for the fully triangulated and hex-
agonal lattices.

The boundary layer along the sides of the Kagome lattice pro-
vides insight into a paradox in the literature on the effective
modulus of triaxial composites. Kueh et al. �2� measured the
modulus of carbon-fiber, epoxy-matrix composites with a Kagome
weave. They found that the elastic modulus is neither isotropic nor
independent of the width of the specimen. Narrow specimens
loaded in the direction shown in Fig. 2�a� have a lower modulus
than wide specimens, while no such width effect was observed for
specimens loaded in the transverse direction. These observations
are readily explained in terms of the compliant boundary layer as
shown in Fig. 2�a�.

The boundary layer phenomenon can be considered to be an
analog of St. Venant’s edge solutions in the theory of linear elas-
ticity �3�. The boundary layer can also be thought of as an expo-
nentially decaying wave of zero frequency into the medium from
the free edge. Thus, a wave propagation technique can be em-
ployed to search for these solutions. The Floquet–Bloch technique
has already been employed by the authors �4� in order to compute
the band structure of lattice materials. In the present study, this
formalism is modified to investigate the phenomenon of elastic
boundary layers. The waves of interest are of zero frequency and
infinite wavelength along the edge. In this study, a general formu-
lation is developed to search for waves of finite frequency and
finite wavelength in the x2 direction, and an exponentially decay-
ing amplitude, with possible oscillation, in the orthogonal x1 di-
rection, as defined in Fig. 1. This formalism is then specialized to
the quasistatic problem of zero frequency and infinite wavelength

along the edge of the lattice. In this limit, the elastic boundary
layers shown, for example, in Fig. 2 are the eigensolutions of a
quadratic eigenvalue problem �QEP�. The eigenvalues give the
spatial decay rate of the boundary layer deformation.

The paper is organized as follows. Section 2 gives the formu-
lation of the eigenvalue problem for plane wave propagation at
finite frequencies and finite wavelength within a spatially periodic
lattice. In Sec. 3, this formalism is used to investigate elastic
boundary layers in the three isotropic lattices and the dependence
of boundary layer thickness on relative density is computed for
the three microstructures. Concluding remarks are given in Sec. 4.

2 Formulation of the Harmonic Wave Propagation
Problem

Recall from classical wave theory �5� that a plane wave of
frequency � is represented by the displacement u�x , t� of a mate-
rial point x at time t as

u�x,t� = u0 exp�i��t − k . x�� �1�

where u0 is the wave amplitude and k is the wave vector. In this
section, we consider the problem of finding all possible plane
waves which propagate along the free edge of a lattice and decay
into the medium. With reference to the coordinate system already
introduced in Fig. 1, assume that surface waves with a finite fre-
quency � travel along the x2 direction, and decay, with oscillation,
in the orthogonal x1 direction. For this wave, the wave vector k
has a purely real component k2 along the x2 direction and a com-
plex component k1, with negative imaginary part, along the x1
direction.

Consider a notional unit cell of any two-dimensional lattice as
sketched in Fig. 3. The Cartesian reference frame �x1 ,x2� is again
employed and the unit base-vector pair �e1 ,e2� is introduced. The
Euler–Lagrange equations of motion of the unit cell of a spatially
periodic lattice panel can be written in the form �4�

Mq̈ + Kq = f �2�

where M and K are the assembled mass and stiffness matrices of
the unit cell obtained by following the usual finite element proce-
dure �6�. The vectors q and f denote the displacement degrees of
freedom and nodal forces of the unit cell, respectively. Here, the
unit cell is discretized into a network of Timoshenko beams. Each
beam is assumed to have three degrees of freedom at each end: an
axial displacement, a transverse displacement, and a rotation of
the beam cross section.
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Assume a time-harmonic displacement solution of the form q
=qei�t. Then Eq. �2� can be simplified to

Dq = f where D � �− �2M + K� �3�

D is the dynamic stiffness and, in the limit of zero frequency, it
reduces to the static stiffness matrix K. It proves convenient to
partition the degrees of freedom of the unit cell into distinct
groups, as labeled in Fig. 3. For example, ql are the generalized
displacements of the nodes on the left-hand side of the unit cell.
Similarly, qr, qb, qt, and qi refer to the displacements of the nodes
situated on the right-hand side, bottom, top, and interior, respec-
tively. The equations of motion given in Eq. �3� can now be writ-
ten in the partitioned form:

�
Dll Dlr Dlb Dlt Dli

Drl Drr Drb Drt Dri

Dbl Dbr Dbb Dbt Dbi

Dtl Dtr Dtb Dtt Dti

Dil Dir Dib Dit Dii

��
ql

qr

qb

qt

qi

� = �
fl

fr

fb

ft

fi

� �4�

Let q�r j� denote the displacement of a lattice point j located by
the position vector r j in the reference unit cell. If a plane wave
solution is admitted, then it follows from Eq. �1� that q�r j� is of
the form

q�r j� = qj exp i��t − ik · r j� �5�

where qj is the amplitude, � is the circular frequency, and k is the
wave vector of the plane wave. With reference to the chosen unit
cell, let the integer pair �n1 ,n2� identify any other cell obtained by
n1 translations along the x1 direction and n2 translations along the
x2 direction. Then, the position vector of the point within the cell
�n1 ,n2�, corresponding to the r j point in the reference unit cell, is
given by

r = r j + n1l1e1 + n2l2e2 �6�
Substitution of Eq. �6� into Eq. �5� gives

q�r� = q�r j�e−ik·�r−r j� = q�r j�e−i�k1n1l1+k2n2l2� �7�

where l1 and l2 are the dimensions of the unit cell of the lattice.
This is Bloch’s theorem �7–9�. The components �k1 ,k2� of the
wave vector k are expressed in the general form

k1 � �1 + i�1 k2 � �2 + i�2 �8�

The real part � and the imaginary part � of the wave components
are called the phase and attenuation constants, respectively. The
phase constant is a measure of the phase change, while the imagi-
nary part is a measure of attenuation of the wave as it travels from
one unit cell to the next. The waves of interest in the present study
propagate along the x2 direction and exhibit an exponential decay
in the x1 direction. Consequently, the wave-vector components are
given by k2=�2 ,k1=�1+ i�1, and �1�0.

The Bloch wave assumption in the x1 direction provides con-
nections between nodal quantities on the right and left sides of the
unit cell:

qr = �ql �9�

fr = − �fl �10�
where

� � exp�− ik1l1� �11�

The aim is to find all possible values of the complex quantity � for
any specified value of the pair �� ,k2�. We make further use of
Bloch’s theorem and equilibrium considerations in the x2 direction
in order to obtain a QEP in �.

Bloch’s theorem and the compatibility of displacements in the
x2 direction enforces the following relationship between the dis-
placements of the shared degrees of freedom along the top-bottom
interface of two neighboring cells:

qt = e−ik2l2qb �12�
Force equilibrium along the edge at the top-bottom interface re-
quires

ft + e−ik2l2fb = 0 �13�

while equilibrium of the internal nodes implies

fi = 0 �14�

Substitution of the expression for fi from Eq. �4� into the above
equation gives

qi = − Dii
−1�Dilql + Dirqr + Dibqb + Ditqt� �15�

Fig. 1 The two-dimensional isotropic lattices considered in
the present study: „a… semiregular Kagome lattice, „b… regular
hexagonal lattice, and „c… regular fully triangulated lattice
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Now substitute the expressions for fb and ft from the third and
fourth rows of Eq. �4� into Eq. �13� and use Eqs. �15� and �12� to
simplify

Pql + Qqr + Rqb = 0 �16�

where the matrices P, Q, and R are defined as

P � Dtl + exp�− ik2l2�Dbl − DtiDii
−1Dil − exp�− ik2l2�DbiDii

−1Dil

Q � Dtr + exp�− ik2l2�Dbr − DtiDii
−1Dir − exp�− ik2l2�DbiDii

−1Dir

R � �Dtb + exp�− ik2l2�Dbb − DtiDii
−1Dib − exp�− ik2l2�DbiDii

−1Dib�

+ exp�− ik2l2��Dtt + exp�− ik2l2�Dbt − DtiDii
−1Dit − exp�

− ik2l2�DbiDii
−1Dit� �17�

Equation �16� gives the displacement degrees of freedom associ-
ated with the bottom nodes qb in terms of ql and qr:

qb = − R−1�Pql + Qqr� �18�

The nodal displacements �qr, qb, qt, qi� can now be written in
terms of ql upon using Eqs. �9�, �12�, �15�, and �18�. Similarly, the

Fig. 2 Deformed mesh of Kagome lattice „�̄=10% … revealing a boundary layer at the sides of
the specimen for „a… uniaxial tension and „b… simple shear. Based on the work of Fleck and Qiu
†1‡.
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nodal forces �fl, fr� can be written in terms of ql via the first two
rows of Eq. �4�. Now enforce the Bloch wave statement in Eq.
�10� to obtain a QEP in �,

��2A + �B + C�ql = 0 �19�

The matrices A, B, and C are defined as

A � Dlr + DlbY + exp�− ik2l2�DltY − DliDii
−1Dir − DliDii

−1DibY

− exp�− ik2l2�DliDii
−1DitY

B � Dll + DlbX + DltX − DliDii
−1Dil − DliDii

−1DibX

− exp�− ik2l2�DliDii
−1DitX + Drr + DrbY + exp�− ik2l2�DrtY

− DriDii
−1Dir − DriDii

−1DibY − exp�− ik2l2�DriDii
−1DitY �20�

C � Drl + DrbX + exp�− ik2l2�DrtX − DriDii
−1Dil − DriDii

−1DibX

− exp�− ik2l2�DliDii
−1DitX

where the matrices X and Y are

X � − R−1P

Y � − exp�− ik2�R−1Q �21�

The number of eigenvalues is given by twice the dimension N
of the displacement vector ql. The eigenvalues appear as recipro-
cal complex pairs. For our present purposes of elastic boundary
layer analysis, only the exponentially decaying waves are rel-
evant, such that �� � �1. We further limit our attention to the qua-
sistatic eigenstates such that ��0 and further specialize the prob-
lem to the case where k2�0, i.e., there is no variation in the
elastic deformation from one unit cell to the other along the x2
direction.

The joint forces F̃i, i=1, . . . ,N, associated with each eigenvec-
tor are calculated from Eq. �3� for each eigenvector. Note that the
N eigenforce vectors are linearly independent since all eigenval-
ues are nonzero in Eq. �19�. A subset of these eigenstates will be
matched with particular solutions for a uniform stress state in the
lattice in order to generate the boundary layer solutions.

3 Elastic Boundary Layers in the Quasistatic Case
Consider the three topologies shown in Fig. 1. Boundary layers

are now obtained for two separate loading cases. For loading case
1, consider a lattice subjected to uniaxial stretching in the x2 di-
rection while the edge of the lattice is traction free �see Fig. 2�a��.
For loading case 2, consider a lattice subjected to simple shear
�see Fig. 2�b��. The unit cells employed are shown in Fig. 4.

In general, the stress state of internal bars is not sustainable at
the free surface due to the reduced connectivity at the surface. By
St. Venant’s principle, an elastic boundary layer develops near the

free edge. This boundary layer provides a smooth transition of
stress state from zero traction at the free edge to a uniform stress
state within the lattice. The stress state deep in the interior of the
lattice can be obtained by considering the equilibrium of a unit
cell under the prescribed external macroscopic loading and using
the Cauchy–Born hypothesis �10,11�. Denote this uniform solu-
tion, valid in the interior of the lattice, as a particular solution. A
complementary function is required such that the sum of the
complementary and particular solutions match the free surface
boundary conditions on the edge, i. e., the generalized force is
zero at the joints lying on the free edge. We shall compute the
characteristic solutions which constitute the complementary func-
tion needed for a given loading condition by adopting the follow-
ing procedure.

1. Select the unit cell of a lattice and assemble the dynamic
stiffness matrix D by following standard finite element pro-
cedures.

Fig. 5 Boundary layers in a Kagome lattice parallel to the x2
direction for �̄=0.05: „a… eigenvector 1, „b… eigenvector 2, „c…
eigenvector 3, and „d… eigenvector 4

Fig. 3 A unit cell for a two-dimensional periodic structure
showing the degrees of freedom shared with the neighboring
unit cells and the coordinate system employed

Fig. 4 Unit cells for „a… semiregular Kagome lattice, „b… regular
hexagonal lattice, and „c… fully triangulated lattice. The axis of
reflective symmetry is shown as a dashed line. Joints on the
boundary are labeled numerically.
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2. Specify the pair ��=0, k2=0� and form the matrices A, B,
and C in the eigenvalue problem in Eq. �19�.

3. Identify the subset of waves for which the eigenvalue has
the property ����= �e�−ik1l1���1� as the characteristic waves
that constitute the complementary function.

4. Calculate the contribution of each eigenvector to the
complementary function by matching with the known par-
ticular solution, thus completing the solution of the bound-
ary value problem.

We adopt the above procedure in order to construct boundary
layer solutions for quasistatic loading of each lattice in turn.

3.1 Kagome Lattice

3.1.1 Boundary Layers Parallel to the x2 Direction. Consider
a Kagome lattice of relative density �̄ subjected to macroscopic
uniaxial stretching in the x2 direction, as shown in Fig. 2�a�. The
unit cell has six boundary displacement degrees of freedom, ql
�R6. The particular solution represents the uniform state of stress

within the lattice. This is matched by a suitably chosen comple-
mentary function in order for the complete solution to satisfy the
free edge boundary conditions. There are two joints, labeled 1 and
2, lying on the free edge for the choice of the unit cell shown in
Fig. 4�a�. Two bars meet at each joint. Three traction-free bound-
ary conditions are specified on each joint in order to satisfy the
free-edge boundary condition. Thus, the following six boundary
conditions must be satisfied on the free edge:

	
b=1

2

Mb
j = 0 	

b=1

2

Vb
j = 0 	

b=1

2

Tb
j = 0 j = 1,2 �22�

where Mb
j , Vb

j , and Tb
j denote the bending moment, shear force,

and axial force, respectively, exerted by the bar b on the joint j.
Numerical calculations for a Kagome lattice in the quasistatic

limit ��=0, k2=0� show that there are six eigenvector solutions of
the eigenvalue problem in Eq. �19�: Two of these eigenvectors are
the rigid-body displacements ����=1�, consistent with the earlier
study of the present authors in Ref. �4�. The remaining four waves

Fig. 6 Elastic boundary layers in a Kagome lattice subjected to macroscopic uniaxial tension along the x2 direction and
subjected to simple shear
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comprise exponentially attenuating waves in the x1 direction so
that the eigenvalue of Eq. �19� satisfies the property ����1. The
four attenuating waves are shown in Fig. 5 for the relative density
�̄ equal to 0.05. The joint forces associated with each eigenvector

F̃i, i=1, . . . ,4, are calculated via Eq. �3�. The relative contribution
of each of the four eigenvectors to the complementary function is
evaluated as follows.

Let the vector F�R6 denote the forces due to the particular
solution acting on the two joints 1 and 2 as labeled in Fig. 4�a�.
This vector is obtained by considering the equilibrium of the in-
finite lattice under prescribed macroscopic loading �see Refs.
�10,11� for details�. The free-edge conditions in Eq. �22� are

matched by finding a complementary force vector F̃�R6 such
that

F + F̃ = 0 �23�

The complementary solution F̃ is expressed as a linear superposi-
tion of the independent eigenforce vectors associated with each of
the exponentially decaying eigenvectors as

F̃ = 	
i=1

4

aiF̃i �24�

where �F̃i� is normalized to unity for each eigenforce vector. The
amplitudes ai of each of these exponentially decaying eigenvector
are obtained from the matching condition in Eq. �23�. For defi-
niteness, the amplitudes are scaled such that the maximum value
of the set is equal to unity.

The amplitudes of the four attenuating eigenvectors in the case
of macroscopic uniaxial tensile loading are a= �0,0.7,1 ,0�. In the
case of macroscopic simple shear loading, the amplitudes are a
= �0.4,0 ,0 ,1�.

The above results are consistent with the reflective symmetry of
the Kagome lattice and loading states. Recall that the unit cell of
the Kagome lattice in Fig. 4�a� has a horizontal axis of reflective
symmetry, as indicated by the dashed line. About this axis of
symmetry, the tensile loading is symmetric, while the simple shear
loading is antisymmetric. It can be seen from Fig. 5 that the de-
formation of the unit cell in second and third eigenvectors exhibits
reflective symmetry about the horizontal axis, whereas the first
and fourth eigenvectors show antisymmetric deformation. Hence,
only symmetric eigenvectors contribute to the complementary
function in the case of uniaxial tensile loading, whereas only an-
tisymmetric eigenvectors contribute in the case of simple shear
loading. The resultant boundary layer in each case is shown in
Fig. 6 for two values of relative density equal to 0.05 and 0.2,
respectively. It can be seen that the boundary layer is much deeper
for the case of lower relative density.

In each loading case, the smallest value of �i, i=1, . . . ,4, for
which �ai��0 governs the boundary layer thickness. The depen-
dence of the attenuation constant ���1l1 on the relative density �̄
is shown in Fig. 7 for each of the eigenvectors. For waves 1 and 2,
� is approximately equal to 4, independent of �̄. These waves
decay rapidly within one unit cell. In contrast, for waves 3 and 4,
� scales linearly with �̄, and these waves decay only gradually
from one unit cell to the next. Recall that the boundary layer for
uniaxial tension involves waves 2 and 3, whereas the boundary
layer for shear involves waves 1 and 4. Consequently, the depth of
the boundary layers in uniaxial tension and in shear both scale as
1 / �̄. We conclude that very deep boundary layers exist for lattices
of low relative density. A similar dependence of boundary layer
depth on �̄ was noted previously by Fleck and Qiu in Ref. �1�. The
specimen size effect observed in the experimental studies of Kueh
et al. �2� can now be explained by the presence of an elastic
boundary layer.

3.1.2 Boundary Layers Parallel to the x1 Direction. Next,
consider the case when the Kagome lattice is loaded along the x1

direction, following the same analysis as that described above.
There is now only one joint of the unit cell, labeled 3 in Fig. 4�a�,
that lies on the free edge. Hence, the unit cell has three boundary
displacement degrees of freedom, qt�R3. In the quasistatic limit �
�=0, k1=0�, we find that there are three eigenvector solutions of
the eigenvalue problem in Eq. �19�, of which two are rigid-body
displacements and one is an exponentially attenuating wave in the
x2 direction for which the eigenvalue of Eq. �19� satisfies the
property ����1.

The eigenvector with the property �� � �1 is sketched in Fig. 8.
It is characterized by a displacement field u2=0, u1�0 together
with joint rotation which decay rapidly with depth x2. This eigen-
vector is activated when the top face of a Kagome lattice is sub-
jected to a uniform displacement in the x1 direction, with uncon-
strained rotation of the joints.

The above eigenvalue analysis was repeated for selected values
of relative density in the range 10−2−10−1. It was found that �
equals 3.8 in all cases, with a unique eigenvector.

3.2 Hexagonal and Triangular Lattices. An eigenvalue
analysis to extract the spatially decaying waves has been per-
formed for a hexagonal lattice and a fully triangulated lattice. The
unit cells employed are sketched in Figs. 4�b� and 4�c�. Eigen-
waves parallel to the x1 and x2 directions are investigated for both
lattices for selected values of relative density �̄ in the range
10−2−10−1.

Consider first the boundary layer solutions parallel to the x2
direction in a hexagonal lattice. There is only one joint of the unit
cell, labeled 1 in Fig. 4�b�, that lies on the free edge. Hence ql

Fig. 7 The attenuation of each of the four eigenvectors versus
�̄ in a Kagome lattice

Fig. 8 Boundary layer in a Kagome lattice parallel to the x1
direction for �̄=0.05
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�R3. In the quasistatic limit ��=0, k2=0�, we find that there are
three eigenvector solutions of the eigenvalue problem in Eq. �19�,
of which two are rigid-body displacements and one is an expo-
nentially attenuating wave in the x1 direction so that the eigen-
value of Eq. �19� satisfies the property ����1. The deformation
associated with this eigenvector is sketched in Fig. 9. It exhibits a
rapid decay of the deformation within one unit cell of the lattice.
The eigenvalue analysis was repeated for selected values of rela-
tive density in the range 10−2−10−1. The eigenvector was un-
changed and the value of ���1l1 equals 5.5 in all cases.

Next, consider the boundary layer solutions parallel to the x1
direction. There are now two joints of the unit cell, labeled 2 and
3 in Fig. 4�b�, that lie on the free edge. Hence, the unit cell has six
boundary displacement degrees of freedom, qt�R6. In the quasi-
static limit ��=0, k1=0�, we find that there are six eigenvector
solutions, of which two are rigid-body displacements and four are
exponentially attenuating waves in the x2 direction such that ���
�1 in Eq. �19�. The elastic deformation corresponding to the four
eigenvectors is shown in Fig. 10. Note that the eigenvector defor-
mations in Figs. 10�a� and 10�c� are symmetric about the vertical

axis of reflective symmetry of the unit cell in Fig. 4�b�, while the
eigenvector deformations in Figs. 10�b� and 10�d� are antisym-
metric. The eigenvalue analysis was repeated for selected values
of relative density in the range 10−2−10−1. It was found that �
��2l2 equals 8.8, 5.3, 3.6, and 1.7 for the four waves shown in
Figs. 10�a�–10�d�, respectively. Also, each eigenvector is insensi-
tive to the magnitude of relative density.

A similar analysis has been performed for the triangular lattice
to obtain boundary layers parallel to the x1 and x2 directions.
Consider first a boundary layer parallel to the x2 direction. The
unit cell has six boundary degrees of freedom, ql�R6, since there
are two joints on the free edge, labeled 1 and 2 in Fig. 4�c�. The
elastic deformations of the lattice associated with the four expo-
nentially decaying waves in the quasistatic limit ��=0, k2=0� are
sketched in Figs. 11�a�–11�d�. It can be seen that the region of
elastic deformation is confined to one unit cell for all eigenvec-
tors. The eigenvalue analysis was repeated for selected values of
relative density in the range 10−2−10−1. The eigenvectors remain
unchanged, with ���1l1 equal to 9.2, 2.5, 2.4, and 1.4 for the
four waves shown in Figs. 11�a�–11�d�, respectively.

Finally, consider possible boundary layer along the x1 direction.
A single eigenvector decays in the x2 direction, as sketched in Fig.
12. Recall that the unit cell has three boundary degrees of free-
dom, qt�R3, since there is only one joint on the free edge, la-
beled 3 in Fig. 4�c�. The shape of the eigenvector is fixed and �
��2l2 equals 3.9 for a relative density in the range 10−2−10−1.

The above study reveals that the boundary layer depth is on the
order of the unit-cell size and hence has a negligible influence on
the elastic stiffness of a finite-width panel made from a hexagonal
lattice or a fully triangulated lattice. These observations are con-
sistent with the earlier study of Fleck and Qiu �1�.

Fig. 9 Boundary layer in a hexagonal lattice parallel to the x2
direction, for �̄=0.05

Fig. 10 Boundary layers in a hexagonal lattice parallel to the
x1 direction for �̄=0.05: „a… eigenvector 1, „b… eigenvector 2, „c…
eigenvector 3, and „d… eigenvector 4

Fig. 11 Boundary layers in a fully triangulated lattice parallel
to the x2 direction for �̄=0.05: „a… eigenvector 1, „b… eigenvector
2, „c… eigenvector 3, and „d… eigenvector 4
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4 Concluding Remarks
A general formulation based on Floquet-Bloch theory has been

developed to compute the elastic boundary layer solutions in two-
dimensional periodic lattices. The special case of boundary layers
in the quasistatic limit of zero frequency and infinite wavelength
along the free edge of the lattice is investigated for three isotropic
lattices: a semiregular Kagome lattice, a regular hexagonal lattice,
and a fully triangulated lattice.

The Kagome lattice displays deep boundary layers when loaded
along particular directions. The analysis presented here provides a
theoretical justification for the observation of Fleck and Qiu �1�
that the boundary layer depth scales as 1 / �̄.

The eigenvector analyses for a hexagonal and a fully triangu-
lated lattice reveal that the characteristic decay length is on the

order of the strut length, independent of the relative density. Con-
sequently, elastic boundary layers have negligible influence on the
stiffness of the finite specimen made from these lattices.

This study has been restricted to lattices under quasistatic load-
ing. In the general case of finite frequency dynamic loading, it is
of practical importance to know if free surface waves of Rayleigh
type exist in these periodic media. The formalism developed here
can be employed to search for free surface waves in lattices, and
this is the subject of a future publication.
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Three-Dimensional Repeated
Elasto-Plastic Point Contacts,
Rolling, and Sliding
Accumulative plastic deformation due to repeated loading is crucial to the lives of many
mechanical components, such as gears, stamping dies, and rails in rail-wheel contacts.
This paper presents a three-dimensional numerical model for simulating the repeated
rolling or sliding contact of a rigid sphere over an elasto-plastic half-space. This model
is a semi-analytical model based on the discrete convolution and fast Fourier transform
algorithm. The half-space behaves either elastic-perfectly plastically or kinematic plas-
tically. The analyses using this model result in histories of stress, strain, residual dis-
placement, and plastic strain volume integral (PV) in the half-space. The model is exam-
ined through comparisons of the current results with those from the finite element method
for a simple indentation test. The results of rolling contact obtained from four different
hardening laws are presented when the load exceeds the theoretical shakedown limit.
Shakedown and ratchetting behaviors are discussed in terms of the PV variation. The
effect of friction coefficient on material responses to repeated sliding contacts is also
investigated. �DOI: 10.1115/1.2755171�

1 Introduction
The wear experiment reported in �1� of a copper pin sliding

repeatedly against a steel ring revealed a severe shear plastic de-
formation in the near surface material layer. The extensive review
by Johnson �2� presented several regimes of behaviors of an
elasto-plastic body subjected to repeated rolling contacts: �1� at a
sufficiently small load, the material may respond purely elasti-
cally; �2� although the yield limit may be reached at the early
cycles, the residual stress, the strain hardening, and the conform-
ingly deformed geometry may “shakedown” the material; thereaf-
ter, the material will respond elastically; and �3� if the load ex-
ceeds a certain value, known as the “shakedown limit,” each cycle
of loading can result in the repeated increment of plastic strain in
the material �known as the “ratchetting”�. Accumulative “ratchet-
ting” in an elasto-plastic body may consequently lead to ductile
fracture, which has been considered to be a mechanism of metallic
wear �3,4�.

Johnson �2� utilized a static shakedown theory to investigate the
theoretical shakedown limit of repeated rolling contacts. The ef-
fect of friction coefficient on the shakedown limit was also stud-
ied. Ponter et al. �5� employed a kinematic shakedown theory,
which considered the history of plastic deformation to study an
elastic-perfectly plastic �EPP� solid over whose surface a pre-
scribed rolling or sliding traction is repeatedly applied. Kapoor et
al. �6� introduced a term, named “plasticity index in repeated slid-
ing,” to include the influence of surface roughness on the shake-
down behaviors of materials. Johnson and Shercliff �7� specifi-
cally investigated the shakedown in the two-dimensional sliding
contacts through considering the asperity profile variations.

The finite element method �FEM� was used to model the two-
dimensional repeated rolling contacts of rail steel with a kinematic
hardening behavior by Bhargava et al. �8�. Kulkarni et al. �9,10�
developed a three-dimensional FEM model for a half-space in
frictionless repeated rolling contacts. Residual stresses, strains,
and other related quantities were calculated when the relative peak
pressure p0 /ks was at the theoretical shakedown limit and above

the theoretical shakedown limit, respectively. Jiang et al. �11� used
FEM to investigate a three-dimensional rolling contact problem,
where the shear tractions in both rolling and perpendicular direc-
tions were considered, when p0 /ks was above the theoretical
shakedown limit. Furthermore, a partial slip condition was studied
in �12�. Yu et al. �13� presented a novel and efficient direct FEM
approach to obtain the steady-state solution of a linear kinematic
plastic-hardening solid in a three-dimensional repeated point con-
tact. In these FEM simulations, the geometric changes of contact-
ing surfaces were neglected, and a prescribed Hertz contact pres-
sure was allowed to traverse repeatedly over a half-space surface.

Recently, a fast semi-analytical method �SAM� was developed
by Jacq et al. �14� to study the elasto-plastic counterformal con-
tacts. Compared to FEM, SAM is more efficient because only the
contact region needs to be meshed and simulated. In addition,
SAM yields a more accurate solution, because it fully considers
the surface geometry variation due to plastic deformation. Ther-
moelastic deformation has been added in this model by Boucly et
al. �15� to account for the frictional heating effect. Wang and Keer
�16� investigated the influence of the type of strain-hardening laws
on the elasto-plastic behaviors of typical steels. The discrete con-
volution and fast Fourier Transform �DC-FFT� algorithm, outlined
by Liu et al. �17�, was embedded in the model to accelerate the
linear convolution calculations involved in the elasto-plastic con-
tact problems.

The current investigation, based on Jacq’s model �14�, aims to
develop a three-dimensional elasto-plastic model for point con-
tacts subjected to the repeated rolling or sliding traction. This
model accounts for the conformity of contact geometry induced
by surface profile variation under cyclic contacts. For the study of
rolling contacts, four types of strain hardening laws are employed
to examine repeated contact performances of materials with dif-
ferent hardening behaviors. Shakedown and ractcheting phenom-
ena are investigated for various relative peak pressure values and
different strain hardening laws in terms of the plastic strain vol-
ume integral �PV� in the entire space. In order to simulate sliding
contact, the shear traction is assumed to be the product of normal
pressure and a specified friction coefficient. The influence of fric-
tion coefficient on stress-strain states is then examined.
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2 Theoretical Background

2.1 Description of an Elasto-Plastic Contact. The repeated
rolling or sliding contacts of a rigid sphere with an elasto-plastic
half-space are shown in Fig. 1. The general contact model based
on elasticity used by many researchers �2,14–16� is summarized
as follows:

W =�
�c

p�x,y�d� �1�

h�x,y� = hi�x,y� + u3�x,y� − � � 0 �2�

p�x,y� � 0 h�x,y�p�x,y� = 0

p�x,y� = 0 � �c h�x,y� = 0 � �c �3�

where W is the applied load, �c the real contact surface, p the
normal contact pressure, u3 the normal displacement of the half-
space, and hi�x ,y� and � are the initial gap and the contact inter-
ference, respectively. Equation �1� is the equilibrium condition,
while Eqs. �2� and �3� give the surface clearance and boundary
constraints, respectively. Based on the corresponding Green’s
functions �the Boussinesq and Cerruti formulas �2��, as indicated
in Eq. �4�, the elastic surface displacement caused by contact pres-
sure p and shear traction s �along the x-axis� is given in Eq. �5�:

Gp�x,y� =
1

�E*r
, Gs�x,y� =

x

��er
2 �4�

u3
e�x,y� =�

−�

� �
−�

�

�Gp�x − x�,y − y��p�x�,y��

+ Gs�x − x�,y − y��s�x�,y���dx�dy� = Gp � p + Gss

�5�

where r=�x2+y2, E*=E / �1−�2�, and �e=2E / �1+���1−2��.
Therefore, an elastic contact problem can be described by a linear
equation system subjected to the constraints of nontensile contact
pressure and impenetrable contact bodies. The iterative method
based on the conjugate gradient method �18� is utilized to solve
this system including equations and inequalities for rough-surface
contact problems efficiently, with which contact pressure and con-
tact area can be determined simultaneously.

In order to include the influence of plastic deformation, Jacq et
al. �14� developed an exact solution for residual displacement u3

r

based on the reciprocal theorem, which is expressed as a volume
integral in Eq. �6� as

u3
r�x,y� = 2��

−�

� �
−�

� �
−�

�

�ij
p �x�,y�,z���ij

*

	�x� − x,y� − y,z��dx�dy�dz� �6�

where �ij
*�x�−x ,y�−y ,z�� is the elastic-strain component in the

half-space at point �x� ,y� ,z��, which is induced by a unit concen-
trated normal force applied on a surface point �x ,y�. The residual
displacement can be directly added into the total displacement u3
in Eq. �2� to obtain the solution of an elasto-plastic contact.

As shown in Fig. 2, a rectangular mesh system is used to digi-
tize the simulation domain. The numerical evaluation needs dis-
crete influence coefficients �ICs� i.e., Dj instead of the continuous
Green’s function. The general form of one-dimensional ICs is the
integral of the product of the shape function Y�x� with Green’s
function G�x� over �−
 /2,
 /2�. A rectangular pulse function is
usually used as the shape function:

Dj =�
−
/2


/2

G�
j − ��Y���d� �7�

where 
 is the mesh size. The displacement ui can be expressed in
a linear convolution as

ui = �
r=0

N−1

prDmod�i−r� of N i = 0, . . . ,N − 1 �8�

For instance, the influence coefficients of elastic displacement due
to normal pressure were discussed in �19�, as shown by

Dij
p =

1

�E*
�f�xu,yu� + f�xl,yl� − f�xu,yl� − f�xl,yu�� �9�

where xu,l=
�i�1 /2�, yu,l=
�j�1 /2�, and f�x ,y�=x ln�y+r�
+y ln�x+r�. The closed-form ICs of displacements due to shear
traction and plastic strains were discussed in �14,19�.

The subsurface stress field should be calculated to determine
the plastic strain zone. The total stress can be decomposed into an
elastic part and a residual part:

ij = ij
e + ij

r �10�
The elastic stress in a solid due to surface tractions is expressed as
follows in the form of discrete convolution:

ij�xm,yn,z� = �
�

�
�

�p��DNij
m−�,n−�,z + s��DSij

m−�,n−�,z� i, j = 1,2,3

�11�

where the ICs for the elastic stress �DNij
m,n,z and DSij

m,n,z� can be
found in �20�. The evaluation of residual stress needs to superpose
the contributions of all yield elements with nonzero plastic strains
after unloading:

ij
r �M� = �

C=1

NV

Dijkl
r �M,C��kl

p �C� �12�

The ICs for the residual stress Dijkl
r were discussed in detail in

�14�. The DC-FFT algorithm �17,21� can be utilized to efficiently
evaluate the linear convolutions existing in Eqs. �8�, �11�, and
�12�.

Using the subsurface stress values and the plasticity model,

Fig. 1 Repeated rolling or sliding contacts of a rigid sphere on
the surface of an elasto-plastic half-space

Fig. 2 Description of the mesh system: „a… the simulated do-
main with the mesh in a three-dimensional view and „b… the
simulated contact surface with the mesh
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plastic deformation can be determined by the increment-based ap-
proach �14�, where the variations of plastic strains in each loading
step are expressed as a function of current stresses ij, variations
of stresses �ij, prestrain �ij

p , and strain-hardening parameters:

��ij
p = f�ij,�ij,�ij

p , hardening parameters� �13�

2.2 Plasticity Consideration. Plasticity is the irreversible be-
havior of a material in response to load application. The von
Mises yield criterion function, as indicated in Eq. �14�, is utilized
to identify the transition from elastic to plastic deformation as

f = VM − g��� =�3

2
Sij:Sij − g��� �14�

Here, VM is the von Mises equivalent stress, �=�d�

=���2d�ij
pd�ij

p /3� the effective accumulative plastic strain, g the
yield strength function �g�0� equals the initial yield strength, Y,
and Sij =ij −

1
3kk�ij the deviatoric stress. Equation �15� presents

the loading/unloading constraints for the increment of effective
plastic strain d� and the yield function f:

Fig. 3 Strain hardening laws: „a… isotropic and „b… kinematic

Fig. 4 Evolutions of the plastic deformation region for 1
�� /�c�11: „a… from the current model and „b… from the FEM
analysis in †26‡

Fig. 5 Model verifications: „a… the dimensionless contact load
versus the dimensionless interference and „b… the dimension-
less contact area versus the dimensionless interference
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f � 0 d� � 0 fd� = 0 �15�
The plastic strain variation is governed by the plastic flow rule
�22�, and expressed in Eq. �16� when the von Mises yield criterion
is used as:

d�ij
p = d�

� f

�ij
= d�

3Sij

2VM
�16�

The simplest plastic model is to assume that materials possess
the elastic-perfectly plastic �EPP� behavior, in which the yield
strength g��� always remains at the initial value Y. In fact, work
hardening usually happens after the first occurrence of plastic
strain to resist further plastic deformation. There are two basic
ways, i.e., isotropic and kinematic hardening, to model the strain
hardening effect.

Isotropic Hardening Law. With an isotropic hardening law, the
yield surface increases in size, but keeps the same shape as the
plastic strain, as shown in Fig. 3�a�. In a quasi-static loading pro-
cess, materials deform at a very low strain rate. Therefore, a rate-
independent law is adequate. In the following study, two isotropic
hardening laws are applied: the Swift power hardening law and
the linear hardening law. The Swift law is expressed as:

g��� = B�C + ��n �17�

Here, B, C, and n are work hardening parameters, and Y =BCn.
The linear hardening law is given as follows:

g��� = Y +
ET

1 − ET/E
� �18�

where ET is the elasto-plastic tangential modulus. However, an
isotropic hardening law alone is generally not suitable for materi-
als subjected to repeated loadings.

Kinematic Hardening Law. On the other hand, the kinematic
hardening law translates the yield surface without changing its
shape and size, as shown in Fig. 3�b�, to account for the effect of
cyclic plastic deformation. The yield surface is dragged along the
direction of increasing stress. Thus, materials become harder for a
further increased load and softer for a reversed load �i.e., the
Bauschinger effect�. The back stress Xij is the center of a new
yield surface in the stress space, and the deviatoric stress becomes
Sij =ij −

1
3kk�ij −Xij.

The back stress depends on the history of plastic deformation,
and the back stress variation can be modeled by the Armstrong
and Frederick’s law �23�:

dXij = d��K
Sij

VM
− �Xij	 Xij = 0 when � = 0 �19�

where K and � are kinematic hardening parameters.
However, the plastic behaviors of some common engineering

materials are too complicated to be described with neither isotro-

pic nor kinematic alone. Therefore, the kinematic law should be
used together with the isotropic law, and then the von Mises yield
function becomes:

f =�3

2
�ij� − Xij�:�ij� − Xij� − g��� �20�

Here, the first term is the von Mises equivalent stress indicated by
the kinematic law, and g��� the yield strength modeled by the
isotropic law.

2.3 Plastic Strain Increment. Fotiu and Nemat-Nasser �24�
developed a universal integration algorithm for constitutive equa-
tions of elastoplasticity, including isotropic and kinematic harden-
ing, as well as thermal softening. The method seems to be uncon-
ditionally stable and accurate. Nelias et al. �27� implemented this
algorithm in their code to improve the convergence of plasticity
loop. The current study follows the idea in �27� to use this algo-
rithm to calculate the increment of plastic strain. A yield occurs
when f����0, i.e., the equivalent von Mises stress is larger than
the current yield strength. The actual increment of the effective
plastic strain 
� should satisfy the condition expressed by f��
+
��=0, in the plastic zone. Thus, the Newton-Raphson iteration
scheme is utilized to find the solution of this nonlinear equation.
The yield function can be expanded approximately as:

f �n+1� = f �n� + 
��n�f ,�
�n� = 0 �21�

The correction of effective plastic strain 
��n� between two con-
secutive iterative steps is expressed as:


��n� = −
f �n�

f ,�
�n� =

f �n�

g,�
�n� − VM,�

�n� �22�

where

�VM

��
= − 3� − K +

3�XijSij

2VM
�23�

The detailed derivation of �VM /�� is given in the Appendix. All
of the related variables are updated as follows:

VM
�n+1� = VM

�n� + VM,�
�n� 
��n� ��n+1� = ��n� + 
��n�

g�n+1� = g���n+1��

Xij
�n+1� = Xij

�n� + 
��n��K
Sij

�n�

VM
�n� − �Xij

�n�	 Sij
�n+1� =

VM
�n+1�

VM
�1� ij

�1�� − Xij
�n+1�

�24�

Here, ��1�, Xij
�1�, VM

�1� , and ij
�1� are the initial effective plastic

strain, back stress, equivalent von Mises stress, and Cauchy stress
components, respectively. The computation ends if the conver-
gence condition is satisfied:


 f �n+1�

g�n+1�
 = 
VM
�n+1� − g�n+1�

g�n+1� 
 � tolerance �25�

The steps indicated in Eqs. �22�–�25� are repeated until the itera-
tion converges. The estimation of the plastic strain increment is
determined by the plastic-flow rule shown below


�ij
p = ���n+1� − ��1��

3Sij
�n+1�

2VM
�n+1� �26�

3 Model Verification
The contact between an elasto-plastic sphere and a rigid half-

space was investigated by Kogut and Etsion �25� using FEM and
by Chang et al. �26� using a volume conservation model �the CEB
model�. The current model is verified by comparing results with
these previous numerical solutions. In order to be consistent with
�25�, this part of the work uses the same elastic-perfectly plastic

Table 1 Parameters and material properties in the simulations

Terms Value

E 210 GPa
� 0.3
Y 383.30 MPa
B 787.68 MPa
C 0.00082
n 0.132
ET 0.2E
K 1782.24 MPa
� 15.80
R 18 mm
Element size, 
 12	12	12 �m
Grid number 64	64	30
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material property. The ratio of Young’s modulus E to the yield
strength Y is 500, �=0.3, and the spherical radius R is 8 mm.
The simulation results are given as a function of the dimensionless
interference � /�c, where �c is the critical interference, indicating
the transition from an elastic contact to an elasto-plastic contact:

�c = ��KH

2E
�2

R �27�

Here, H is the hardness of the sphere equal to 2.8Y. The hardness
coefficient K is related to the Poisson ratio by K=0.454+0.41�.

Evolutions of the plastic region versus the dimensionless inter-
ference are plotted in Fig. 4, where ac is the Hertz contact radius
at the critical interference �c. A good agreement is found between
the results obtained from the current model and the FEM model
presented in �25�. The plastic region lies under the surface first,
and then touches the surface as the interference increases up to
about � /�c=6.

Further verifications are made for the dimensionless contact
load and the dimensionless contact area, when increasing the di-
mensionless interference value up to 15.6. In Fig. 5, the results

from the current semi-analytical model are compared with the
solutions from the FEM �25� and the CEB �26� models. Here, Ac

and Pc are the critical contact area and the critical load, respec-
tively, when the contact interference equals �c. As indicated in
Fig. 5�a�, the contact load obtained from this model agrees with
the FEM results very well in the entire loading range investigated,
and the relative error is less than 2%. The CEB model predicts a
higher contact load than the FEM and the current models do,
because of the assumptions of volume conservation and constant
mean contact pressure. Figure 5�b� also indicates a satisfied agree-
ment between the contact area from the current model and the
FEM results even at the large contact interference, and the maxi-
mum relative error is about 2.6%. Similarly, the CEB model pre-
dicts a higher contact area as compared to the results from the
current and the FEM models. Considering the fact that contact
conditions of commonly used engineering components are within
the range of ��15.6�c, the current model can be utilized to
simulate the elasto-plastic contacts in a wide range of applications
accurately and efficiently.

Fig. 6 Simulation results obtained using the KP hardening law when the indenter passes the origin for the first three rolling
contacts: „a… the effective plastic strain along the z-axis, „b… the dimensionless total von Mises stress along the z-axis, „c… the
dimensionless residual von Mises stress along the z-axis, and „d… the residual surface normal displacement along the x-axis
„positive for the inward displacement and negative for the outward displacement…

Journal of Applied Mechanics MARCH 2008, Vol. 75 / 021021-5

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



4 Results and Discussion
Three-dimensional simulations are conducted using the current

model for a repeated rolling or sliding contact involving a half-
space and a punch, as shown in Fig. 1. Suppose that the punch is
a rigid sphere with a radius of R=18 mm and the elasto-plastic
half-space has the material properties of DP600 high strength
steel. Both surfaces are assumed to be smooth. The punch is
pushed into the half-space by a normal load at first; and then it is
translated across the half-space surface for a certain distance when
the normal load remains. After that, the indenter is disengaged
from the surface and drawn back to the beginning point. Cyclic
frictionless rolling contacts are simulated by repeating the whole
process. Similarly, cyclic sliding contact can be simulated with
shear traction applied on the interface. The repeated contact analy-
ses result in histories of stress-strain states and plastic strain vol-
ume integral �PV� in the elasto-plastic half-space. Simulation pa-
rameters and material properties are listed in Table 1. In the
following results, the stresses are normalized by the initial yield
strength Y, the space variables by the Hertz contact radius aH,
and the strains are represented in the form of percentage. As
shown in Fig. 2, the x- and y-axes are laid on the surface, while
the z-axis points into the half-space downwards.

4.1 Results of Repeated Rolling Contacts. For the simula-
tions of rolling contacts, the maximum normal compressive load
remains 25 N, corresponding to the relative Hertz peak pressure
p0 /ks=5.2, the Hertz contact radius aH=113.5 �m, and the Hertz
interference � /�c=3.46. In each rolling contact cycle, the ball
indenter is moved along the x-axis from �−2aH,0� to �2aH,0�.

Results Obtained From the Kinematic Law. The simulation re-
sults of the first three rolling cycles are plotted in Figs. 6 and 7 for
the kinematic plasticity hardening behavior �KP�. As indicated in
Fig. 6�a�, the effective plastic strain along the z-axis increases
with repeated rolling contacts; however, the plastic strain incre-
ment drops substantially between two consecutive cycles. The
maximum increment of the effective plastic strain reduces from
0.31% at the first rolling pass to 0.02% at the third rolling pass. In
addition, there is no obvious change of the plastic zone range with
the cycle number. These are consistent with the observations re-
ported by Kulkarni et al. �10�.

Figure 6�b� shows that equivalent stress intensity is equal to the
initial yield strength Y, when the indenter passes the origin for
the first time. As the rolling traction is translated repeatedly, the
stress intensity increases in the layer near the surface, and de-

Fig. 7 Simulation results obtained using the KP hardening law when the indenter passes x=2aH for the first three rolling
contacts: „a… the normal plastic strain �xx

p along the x-axis at z=0.48aH, „b… the shear plastic strain �xz
p along the x-axis at z

=0.48aH, „c… the normal residual stress �xx
r along the z-axis, and „d… the shear residual stress �xz

r along the z-axis
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Fig. 8 Comparisons of the results from different strain hardening laws for repeated rolling contacts: „a… variations of the
effective plastic strain at z=0.48aH below the origin as a function of the number of passes, „b… the effective plastic strain along
the z-axis after the third rolling pass, „c… the dimensionless total von Mises stress along the z-axis when the indenter passes
the origin for the third time, „d… the residual surface normal displacement along the x-axis after the third rolling pass, „e…
increments of the plastic strain volume integral as a function of the number of passes, and „f… curves of the shear strain
component �xz versus the shear stress component �xz at z=0.48aH below the origin
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creases within the plastic zone. However, the profiles of von
Mises stress do not have an obvious change, and keep the same
shape of the elastic solution outside the plastic zone. The reason
can be found in the residual stress history presented in Fig. 6�c�.
The residual stress induced by the accumulative plastic strain
counteracts the elastic stress field; it is the main factor leading to
the material shakedown. As compared to the results obtained after
the first passing, the residual stress intensity between the surface
and the Hertz depth of 0.48aH in the following cycles is reduced,
while the residual stress intensity is enhanced below the Hertz
depth. In addition, the residual stress decays fast and has a negli-
gibly small influence on the elastic stress field outside the plastic
zone. Figure 6�d� presents the variation of the normal residual
displacement along the x-axis; it indicates an increment of the
depth of the residual dent induced by the cyclic rolling contact. A
plowing material buildup wedge formed by plastic deformation
can be found ahead of the ball indenter.

Figures 7�a� and 7�b� show the histories of plastic stain com-
ponents �xx

p and �xz
p along the rolling direction at z=0.48aH, re-

spectively. The normal plastic strain �xx
p does not have much

variation with repeated rolling contacts. The lateral deformation
along the rolling direction after the first passing can be detected
from the negative value of plastic shear strain �xz

p . The following
rolling contacts lift �xz

p upwards to zero and reduce the lateral
deformation on the surface. Figures 7�c� and 7�d� present the evo-
lutions of the profiles of residual stress components xx

r and xz
r

along the z-axis, respectively. The normal residual stress xx
r is

found to be tensile in the layer near the surface. Below this layer
and within the plastic zone, xx

r is found to be compressive. The
maximum compressive xx

r is at z=0.5aH; however, the maximum
xx

r does not change with repeated rolling contacts. On the other
hand, the shear residual stress xz

r decreases obviously with re-
peated rolling contacts.

Comparisons of Different Hardening Laws. Four different plas-
ticity hardening behaviors: elastic-perfectly plastic �EPP�, kine-
matic plastic �KP�, linear-isotropic-kinematic plastic �LIKP�, and
power-isotropic-kinematic plastic �PIKP� are included in this
model for comparison. Table 1 lists the work hardening param-
eters used in the calculations. Figure 8 shows the comparisons of
the results obtained from these plasticity hardening laws.

The variation of the effective plastic strain versus the number of
rolling passes at the Hertz depth of 0.48aH below the origin is
presented in Fig. 8�a�, and the profiles of effective plastic strain
along the depth at the origin after the third passing are plotted in
Fig. 8�b� for different hardening laws. After the third passing, the
maximum effective plastic strains obtained from the EPP, KP,
PIKP, and LIKP laws are 0.437%, 0.435%, 0.268%, and 0.205%,
respectively. In addition, the increments of the effective plastic
strain corresponding to the PIKP and LIKP laws drop faster than
those to the EPP and KP laws do. The range of the plastic zone is
not affected by the strain-hardening laws. Figure 8�c� shows the
dimensionless von Mises stress along the z-axis when the indenter
passes the origin for the third time. Due to the strong counteract-
ing effect of the residual stress induced by the plastic strain in the
neighboring space, the von Mises stresses from the EPP and KP
laws are less than the initial yield strength Y within the plastic
zone. However, the von Mises stresses from the PIKP and LIKP
laws are larger than Y, because of the weak effect of residual
stress and the increased yield limit caused by work hardening. As
indicated in Fig. 8�d�, the surface residual dent caused by the
repeated rolling contact on the EPP material is deeper than those
on the materials with other hardening behaviors. The shallow dent
on the surface of LIKP materials implies a strong work hardening
effect, indicated by the linear isotropic hardening law.

The plastic strain volume integral �PV� � is defined in Eq. �28�
as an index used to measure the volume summation of the plastic
deformation in the entire space:

� =� �
V

� �dV = 
��
i=1

Nv

��i� �28�

where 
� is the elementary volume, Nv the number of yield
elements where the plastic strain has a nonzero value, and ��i� the
effective plastic strain in the ith element. The increments of PV
with the number of rolling passes for different hardening laws are
presented in Fig. 8�e�. The PV increments obtained using all hard-
ening laws drop significantly. In each rolling cycle, the PV incre-
ment in the EPP material is the largest, while that in the LIKP
material is the smallest.

Figure 8�f� shows the curves of shear strain �xz versus shear
stress xz at z=0.48aH below the origin under the repeated rolling
contacts. At the beginning, the purely elastic loading curves ob-
tained using the EPP and LIKP laws overlap. When no plastic
deformation occurs at the point of �0,0 ,0.48aH�, the slopes of the
stress-strain curves are the same as those of the purely elastic
loading curves. For materials with the EPP behavior, �xz changes
with xz in each cycle, although the �xz increment decreases with

Fig. 9 Shakedown and ratchetting behaviors: „a… the incre-
ment of the plastic strain volume integral versus the rolling
pass number for different relative peak pressure values p0 /ks
and „b… the PV increment versus the rolling pass number for
different strain hardening laws „the numbers indicate the cycle
number when shakedown occurs…
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cyclic xz. On the other hand, for the materials with the LIKP
behavior, the curve of �xz versus xz becomes almost reversed
after the first rolling pass.

Shakedown and ratchetting. The steady-state �shakedown� and
accumulative plastic deformation �ratchetting� in repeated rolling
contacts are investigated in terms of the plastic strain volume
integral. “Shakedown,” indicates the state where the PV increment
vanishes beyond a certain number of rolling passes. On the other
hand, “ratchetting” means the ceaseless accumulation of PV in the
half-space under cyclic rolling contacts.

Johnson �2� discussed the shakedown phenomenon in terms of
the relative peak pressure p0 /ks and the theoretical shakedown
limit for the three-dimensional spherical rolling contact of an
elastic-perfectly plastic solid is p0 /ks=4.68. Three different rela-
tive peak pressure values: p0 /ks=3.84, 5.21, and 5.83, were em-
ployed in this part of the simulation work. The PV increments 
�
as a function of the number of rolling passes are presented in Fig.
9�a� for the material with the KP hardening behavior. The half-
space can reach the shakedown state when the relative peak pres-
sure value is 3.84 or 5.21. Actually, the increase in the peak pres-
sure can elongate the period leading to the state of shakedown.

For p0 /ks=5.83, the PV increment drops fast and converges to one
stable value �about 9 �m3�, by the amount of which the half-space
involves a “ratchetting” of PV in each cycle. The half-space ex-
periences shakedown �at p0 /ks=5.21� above the theoretical shake-
down limit for the rolling contact because the current model con-
siders the influences of conformingly deformed contact geometry
and strain hardening. In addition, the type of strain hardening laws
can change the shakedown and ratchetting behaviors. Figure 9�b�
shows the PV increment versus the number of passes for different
hardening laws when p0 /ks=5.83. For the KP material, repeated
ratchetting of plastic deformation occurs under this condition,
while the PIKP material shakedowns at the rolling pass number of
13 and the LIKP material shakedowns at an even lower rolling
pass number.

4.2 Results of Repeated Sliding Contacts. In the simulations
of repeated sliding contacts, the indenter is brought into contact
with the half-space by a normal load of 18.2 N, corresponding to
p0 /ks=4.68, the Hertz radius aH=102 �m, and the Hertz interfer-
ence � /�c=2.8. At the same time, a surface shear traction, equal
to the production of friction coefficient, � f, and normal pressure,

Fig. 10 Results of the repeated sliding contacts for different friction coefficients when the indenter passes the origin for the
second time: „a… the dimensionless total von Mises stress along the z-axis, „b… the effective plastic strain along the z-axis, „c…
the dimensionless residual von Mises stress along the z-axis, and „d… the residual surface displacement u3

r along the x-axis
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is applied along the positive x-axis on the contact interface. Simi-
larly, the rigid ball indenter slides from �−2aH,0� to �2aH,0� in
each sliding pass, and the half-space possesses a KP hardening
behavior. In order to investigate the effect of shear traction on the
repeated sliding contact, various friction coefficients � f =0.0 �roll-
ing�, 0.1, 0.14, and 0.18 are used.

Figure 10 presents the comparisons of simulation results ob-
tained for different friction coefficients when the indenter passes
the origin for the second time. As shown in Fig. 10�a�, the von
Mises stress intensity increases with friction coefficient in the near
surface layer and the plastic zone, while it remains unchanged
below the plastic zone. The increment in stress intensity induced
by shear traction can lead to more plastic deformation; it may
make the materials experience ratchetting under a lighter load.
Therefore, the shakedown limit can be reduced by increasing
shear traction. This is consistent with the well known conclusion
drawn by Johnson in �2�. Figure 10�b� indicates that the friction
coefficient increment enhances the effective plastic strain, and
also lifts the position of the maximum effective plastic strain to-
wards the surface. However, the depth of plastic zone is not in-
fluenced by friction. Figure 10�c� presents the residual stress pro-
files along the z-axis for various friction coefficients. The increase
in friction coefficient reduces the residual stress intensity in the

plastic zone. Contrary to the residual stress intensity in repeated
rolling contacts, the residual stress intensity decreases with the
increased effective plastic strain in repeated sliding contacts. Fig-
ure 10�d� shows that the residual dent becomes deeper and the
buildup wedge ahead of the indenter is higher when the contact
interface has a larger friction coefficient.

The detailed information of stress-strain states for different fric-
tion coefficients is presented in Fig. 11 after the second sliding
pass. The profiles of plastic strain components �xx

p and �xz
p along

the x-axis at z=0.48aH are plotted in Figures 11�a� and 11�b�,
respectively. The increase in friction coefficient reduces the nor-
mal plastic strain �xx

p within the sliding zone. This is because the
reversed tangential load due to the sliding contact can relax the
normal plastic deformation along the sliding direction. On the
other hand, the shear plastic strain component �xz

p along the sliding
direction increases significantly with the increasing friction coef-
ficient. The reason is that the intenser shear stress field due to the
increasing friction coefficient can generate larger irreversible
shear plastic strain. In addition, the relatively large plastic strains
�xx

p and �xz
p indicate the presence of surface lateral deformation

drifting along the sliding direction. The increase of friction coef-
ficient actually augments the degree of tangential plowing. Fig-

Fig. 11 Results of the repeated sliding contacts for different friction coefficients after the second passing: „a… the normal
plastic strain �xx

p along the x-axis at z=0.48aH, „b… the shear plastic strain �xz
p along the x-axis at z=0.48aH, „c… the normal

residual stress �xx
r along the z-axis, and „d… the shear residual stress �xz

r along the z-axis
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ures 11�c� and 11�d� show the profiles of residual stress compo-
nents xx

r and xz
r along the z-axis after unloading. Figure 11�c�

indicates that the compressive normal residualstress xx
r in the

plastic zone decreases with friction coefficient. This behavior is
consistent with the trend of the normal plastic strain component
�xx

p . The increase in friction coefficient first enhances the tensile
residual stress component xx

r near the surface, but further friction
increment reduces the tensile part of xx

r . Figure 11�d� shows that
the shear residual stress component xz

r first increases and then
drops with the increasing friction coefficient.

5 Conclusions
A three-dimensional elasto-plastic contact model has been de-

veloped for repeated rolling and sliding contacts of a spherical
indenter over a half-space. This model employed a universal inte-
gration algorithm for elasto-plasticity involving isotropic and ki-
nematic hardening. Verification of this model was made through
comparing the results obtained from the current model with pub-
lished numerical solutions.

�1� The current model was utilized to simulate the evolutions
of plastic strain, elastic and residual stress, and residual
normal surface displacement under the repeated rolling
contacts for kinematic plastic hardening �KP� materials. As
the rolling traction is translated repeatedly, the effective
plastic strain increases and the total von Mises stress inten-
sity decreases in the plastic zone, while the range of the
plastic zone remains fixed.

�2� The elastic-perfectly plastic �EPP�, kinematic plastic �KP�,
and linear/power-isotropic-kinematic plastic �LIKP/PIKP�
hardening behaviors of materials have been simulated. In
terms of the capability of resisting further plastic deforma-
tion, the LIKP material is the strongest and the EPP mate-
rial the weakest.

�2� The plastic strain volume integral in the half-space was
used to study the shakedown and ratchetting behaviors. The
shakedown state may be readily achieved at a light load in
a solid with the isotropic-kinematic plastic hardening prop-
erty.

�4� The current model was applied to simulate the stress and
strain histories in repeated sliding contacts with Coulomb
shear traction applied on the surface. The friction coeffi-
cient increment enhances the effective plastic strain and the
total von Mises stress intensity; it reduces the residual
stress intensity in the plastic zone. The presence of shear
traction increases the depth of residual dent, the degree of
tangential plowing, and the height of buildup ahead of the
indenter.
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Nomenclature
aH � contact radius of the Hertz solution, mm

B ,C ,n � swift isotropic hardening law parameters, B
�MPa�

D � influence coefficients �ICs�
E � Young’s modulus, GPa

E* � equivalent Young’s modulus, GPa, E*=E / �1
−�2�

ET � elasto-plastic tangential modulus
g��� � yield strength function, MPa

G � Green’s functions

h ,hi � surface gap, initial gap, mm
ks � von Mises shear yield strength, ks=Y /�3,

Mpa
K � Armstrong and Frederick kinematic law coeffi-

cients, MPa
p0 � peak pressure of the Hertz solution

p ,s � pressure and shear traction, MPa
R � radius of the spherical punch, mm

Sij � deviatoric stress, MPa
u3 ,u3

e ,u3
r � total normal displacement, elastic, and residual

normal displacement
W � applied contact load, N

x ,y ,z � space coordinates
Xij � back stress components, MPa
Y � shape function

Greek Letters
� � Armstrong and Frederick kinematic law

coefficients
�c � real contact area

 � mesh size, �m

�ij
p ,�ij � plastic and total strain component

� � plastic strain volume integral �PV�, �m3

d� ,� � effective plastic incremental and accumulative
strain

� � shear modulus, �=2E / �1+��, GPa
�e � equivalent shear modulus, 1 /�e= �1+���1

−2�� /2E, GPa
� f � friction coefficient
� � Poisson ratio

ij ,ij
e ,ij

r � Cauchy stress components, elastic, and residual
stress components, MPa

VM � von Mises equivalent stress, MPa
Y � initial yield strength with strain hardening,

MPa
� � contact interference, mm

Special Marks
* � continuous convolution

��� � deviatoric operator
��, � partial differential operator

EPP � elastic-perfectly plastic hardening behavior
KP � kinematic-plastic hardening behavior

LIKP/PIKP � linear/power-isotropic-kinematic-plastic harden-
ing behavior

Appendix: Derivation of Partial Differential ��VM Õ��

Based on Hooke’s law,

ij� = 2���ij� − �ij
p�� �A1�

Considering the volume conservation of the plastic deformation
�kk

p =0, Eq. �A1� becomes

ij� = 2���ij� − �ij
p � �A2�

When the Armstrong and Frederick kinematic hardening law is
used, one has the following:

Sij = ij� − Xij = 2���ij� − �ij
p � − Xij

�Xij

��
= K

Sij

VM
− �Xij �A3�

and the total strain �ij� is assumed to be rate independent if the
plastic strain increment 
� is sufficiently small in one loading
step. Thus,
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�VM

��
=

���3SijSij/2�
��

=
3Sij

2VM

�Sij

��
=

3Sij

2VM
�− 2�

��ij
p

��
−

�Xij

��
	

�A4�

In light of the flow rule, i.e., d�ij
p =d�3Sij /2VM, one has:

�VM

��
=

3Sij

2VM
�− 3�

Sij

VM
− K

Sij

VM
+ �Xij	 = − 3� − K +

3�XijSij

2VM

�A5�
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Stresses in a Multilayer Thin
Film/Substrate System Subjected
to Nonuniform Temperature
Current methodologies used for the inference of thin film stress through curvature mea-
surements are strictly restricted to uniform film stress and system curvature states over
the entire system of a single thin film on a substrate. By considering a circular multilayer
thin film/substrate system subjected to nonuniform temperature distributions, we derive
relations between the stresses in each film and temperature, and between the system
curvatures and temperature. These relations featured a “local” part that involves a direct
dependence of the stress or curvature components on the temperature at the same point,
and a “nonlocal” part, which reflects the effect of temperature of other points on the
location of scrutiny. We also derive relations between the film stresses in each film and
the system curvatures, which allow for the experimental inference of such stresses from
full-field curvature measurements in the presence of arbitrary nonuniformities. These
relations also feature a “nonlocal” dependence on curvatures making full-field measure-
ments of curvature a necessity for the correct inference of stress. The interfacial shear
tractions between the films and between the film and substrate are proportional to the
gradient of the first curvature invariant, and can also be inferred experimentally.
�DOI: 10.1115/1.2755178�

Keywords: multilayer thin films, nonuniform film temperatures and stresses, nonuniform
system curvatures, nonlocal stress-curvature relations, interfacial shears

1 Introduction
Substrates formed of suitable solid-state materials may be used

as platforms to support various thin film structures. Integrated
electronic circuits, integrated optical devices and optoelectronic
circuits, microelectromechanical systems deposited on wafers,
three-dimensional electronic circuits, systems-on-a-chip struc-
tures, lithographic reticles, and flat panel display systems are ex-
amples of such thin film structures integrated on various types of
plate substrates. The stress buildup in the thin film is important to
the reliability and performance of these devices and systems.

Stoney �1� studied a system composed of a thin film of thick-
ness hf, deposited on a relatively thick substrate, of thickness hs,
and derived a simple relation between the curvature � of the sys-
tem and the stress ��f� of the film as follows:

��f� =
Eshs

2�

6hf�1 − �s�
�1.1�

In the above, the subscripts “f” and “s” denote the thin film and
substrate, respectively, and E and � are the Young’s modulus and
Poisson’s ratio. Equation �1.1� is called the Stoney formula, and it
has been extensively used in the literature to infer film stress
changes from experimental measurement of system curvature
changes �2�.

Stoney’s formula was based on a number of assumptions:

�i� Both the film thickness hf and the substrate thickness hs
are uniform and hf �hs�R, where R represents the char-
acteristic length in the lateral direction �e.g., system radius
R shown in Fig. 1�;

�ii� The strains and rotations of the plate system are infinitesi-
mal;

�iii� Both the film and substrate are homogeneous, isotropic,
and linearly elastic;

�iv� The film stress states are in-plane isotropic or equibiaxial
�two equal stress components in any two, mutually or-
thogonal in-plane directions� while the out-of-plane direct
stress and all shear stresses vanish;

�v� The system’s curvature components are equibiaxial �two
equal direct curvatures� while the twist curvature vanishes
in all directions; and

�vi� All surviving stress and curvature components are spa-
tially constant over the plate system’s surface, a situation
that is often violated in practice.

Despite the explicitly stated assumptions of spatial stress and
curvature uniformity, the Stoney formula is often, arbitrarily, ap-
plied to cases of practical interest where these assumptions are
violated. This is typically done by applying Stoney’s formula
pointwise, and thus extracting a local value of stress from a local
measurement of the curvature of the system. This approach of
inferring film stress clearly violates the uniformity assumptions of
the analysis and, as such, its accuracy as an approximation is
expected to deteriorate as the levels of curvature nonuniformity
become more severe.

Following the initial formulation by Stoney, a number of exten-
sions have been derived to relax some assumptions. Such exten-
sions of the initial formulation include relaxation of the assump-
tion of equibiaxiality as well as the assumption of small
deformations/deflections. A biaxial form of Stoney formula �with
different direct stress values and nonzero in-plane shear stress�
was derived by relaxing the assumption �v� of curvature equibi-
axiality �2�. Related analyses treating discontinuous films in the
form of bare periodic lines �3� or composite films with periodic
line structures �e.g., bare or encapsulated periodic lines� have also
been derived �4–6�. These latter analyses have removed the as-
sumptions �iv� and �v� of equibiaxiality and have allowed the
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existence of three independent curvature and stress components in
the form of two, nonequal, direct components and one shear or
twist component. However, the uniformity assumption �vi� of all
of these quantities over the entire plate system was retained. In
addition to the above, single, multiple, and graded films and sub-
strates have been treated in various “large” deformation analyses
�7–10�. These analyses have removed both the restrictions of an
equibiaxial curvature state as well as the assumption �ii� of infini-
tesimal deformations. They have allowed for the prediction of
kinematically nonlinear behavior and bifurcations in curvature
states that have also been observed experimentally �11,12�. These
bifurcations are transformations from an initially equibiaxial to a
subsequently biaxial curvature state that may be induced by an
increase in film stress beyond a critical level. This critical level is
intimately related to the system aspect ratio, i.e., the ratio of in-
plane to thickness dimension and the elastic stiffness. These
analyses also retain the assumption �vi� of spatial curvature and
stress uniformity across the system. However, they allow for de-
formations to evolve from an initially spherical shape to an ener-
getically favored shape �e.g., ellipsoidal, cylindrical, or saddle
shapes� that features three different, still spatially constant, curva-
ture components �6,11�.

The above-discussed extensions of Stoney’s methodology have
not relaxed the most restrictive of Stoney’s original assumption
�vi� of spatial uniformity that does not allow film stress and sys-
tem curvature components to vary in the thin film/substrate sys-
tem. This crucial assumption is often violated in practice, since
film stresses and the associated system curvatures are nonuni-
formly distributed. Recently, Huang et al. �13� and Huang and
Rosakis �14� relaxed the assumption �vi� �and also �iv� and �v�� to
study the thin film/substrate system subjected to nonuniform, axi-
symmetric misfit strain �in thin film� and temperature change �in
both thin film and substrate�, respectively, while Huang and Ro-
sakis �15� and Ngo et al. �16� studied the thin film/substrate sys-
tem subject to arbitrarily nonuniform �e.g., nonaxisymmetric� mis-
fit strain and temperature. The most important result is that the
film stresses depend nonlocally on the system curvatures; i.e., they
depend on curvatures of the entire system. The relations between
film stresses and system curvatures are established for arbitrarily
nonuniform misfit strain and temperature change, and such rela-
tions degenerate to Stoney’s formula for uniform, equibiaxial
stresses and curvatures.

Feng et al. �17� relaxed part of the assumption �i� to study the
thin film and substrate of different radii. Ngo et al. �18� com-

pletely relax the assumption �i� to study arbitrarily nonuniform
thickness of the thin film. They derived an analytical relation be-
tween the film stresses and system curvatures that allows for the
accurate experimental inference of film stress from full-field cur-
vature measurements once the film thickness distribution is
known. Brown et al. �19� used two independent types of X-ray
microdiffraction to measure both substrate slope and film stress
across the diameter of an axisymmetric thin film/substrate speci-
men composed of a Si substrate on which a smaller circular W
film island was deposited. The substrate slopes, measured by poly-
chromatic �white beam� X-ray microdiffraction, were used to cal-
culate curvature fields and to, thus, infer the film stress distribu-
tion using both the “local” Stoney formula and the new, nonlocal
relation. The variable film thickness, which was independently
measured, was also an input to the new relation. These were then
compared with the film stress measured independently through
monochromatic X-ray diffraction in the sample to validate the
new analytical relation �18�.

Many thin film/substrate systems involve multiple layers of thin
films. The main purpose of this paper is to extend the above analy-
ses by Huang, Rosakis, and co-workers to a system composed of
multilayer thin films on a substrate subjected to nonuniform tem-
perature distribution. We will relate stresses in each film and sys-
tem curvatures to the temperature distribution, and ultimately de-
rive a relation between the stresses in each film and system
curvatures that would allow for the accurate experimental infer-
ence of film stresses from full-field and real-time curvature mea-
surements.

2 Axisymmetric Temperature Distribution
We first consider a system of multilayer thin films deposited on

a substrate subjected to axisymmetric temperature distribution
T�r�, where r is the radial coordinate �Fig. 1�. The thin films and
substrate are circular in the lateral direction and have a radius R.
The deformation is axisymmetric and is therefore independent of
the polar angle �, where �r ,� ,z� are cylindrical coordinates with
the origin at the center of the substrate �Fig. 1�.

2.1 Governing Equations. Let hfi
�i=1, . . . ,n� denote the

thickness of the ith thin film �Fig. 1�. The total film thickness hf

=�i=1
n hfi

of all n thin films is much less than the substrate thick-
ness hs, and both are much less than R; i.e., hf �hs�R. The
Young’s modulus, Poisson’s ratio, and coefficient of thermal ex-
pansion of the ith film and substrate are denoted by Efi

, � f i
, � f i

, Es,
�s, and �s, respectively.

The substrate is modeled as a plate since it can be subjected to
bending and hs�R. The thin films are modeled as membranes that
have no bending rigidities due to their small thickness hfi

�hs.
Therefore, they all have the same in-plane displacement uf�r� in
the radial direction. The strains are �rr=duf /dr and ���=uf /r. The
stresses in the ith thin film can be obtained from the linear
thermo-elastic constitutive model as

�rr
�i� =

Efi

1 − � f i

2 �duf

dr
+ � f i

uf

r
− �1 + � f i

�� f i
T�

���
�i� =

Efi

1 − � f i

2 �� f i

duf

dr
+

uf

r
− �1 + � f i

�� f i
T� �2.1�

The membrane forces in the ith thin film are

Nr
�f i� = hfi

�rr
�i� N�

�f i� = hfi
���

�i� �2.2�

For a nonuniform temperature distribution T=T�r�, the shear
stress tractions at the film/substrate and film/film interfaces do not
vanish, and are denoted by ��i��r��i=1, . . . ,n� as shown in Fig. 2.
The normal stress tractions �zz still vanish because thin films have

Fig. 1 A schematic diagram of a multilayer thin film/substrate
system, showing the cylindrical coordinates „r ,� ,z…
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no bending rigidities. The equilibrium equations for thin films,
accounting for the effect of interface shear stress tractions, be-
come

�
dNr

�f1�

dr
+

Nr
�f1� − N�

�f1�

r
− ���1� − ��2�� = 0

dNr
�f2�

dr
+

Nr
�f2� − N�

�f2�

r
− ���2� − ��3�� = 0

]

dNr
�fn�

dr
+

Nr
�fn� − N�

�fn�

r
− ��n� = 0

�2.3�

Substitution of Eqs. �2.1�–�2.3� and the summation of its left-hand
side yield

�
i=1

n Efi
hfi

1 − v f i

2 	d2uf

dr2 +
1

r

duf

dr
−

uf

r2
 = ��1� + �
i=1

n Efi
hfi

� f i

1 − v f i

dT

dr

�2.4�

Let us denote the displacement in the radial �r� direction at the
neutral axis �z=0� of the substrate, and w the displacement in the
normal �z� direction. The forces and bending moments in the sub-
strate are obtained from the linear thermo-elastic constitutive
model as

Nr
�s� =

Eshs

1 − �s
2�dus

dr
+ �s

us

r
− �1 + �s��sT�

N�
�s� =

Eshs

1 − �s
2��s

dus

dr
+

us

r
− �1 + �s��sT� �2.5�

Mr =
Eshs

3

12�1 − �s
2�
	d2w

dr2 +
�s

r

dw

dr



M� =
Eshs

3

12�1 − �s
2�
	�s

d2w

dr2 +
1

r

dw

dr

 �2.6�

The shear stress ��1� at the film/substrate interface is equivalent
to the distributed axial force ��1��r� and bending moment
�hs /2���1��r� applied at the neutral axis �z=0� of the substrate. The
in-plane force equilibrium equation of the substrate then becomes

dNr
�s�

dr
+

Nr
�s� − N�

�s�

r
+ ��1� = 0 �2.7�

The out-of-plane force and moment equilibrium equations are
given by

dMr

dr
+

Mr − M�

r
+ Q −

hs

2
��1� = 0 �2.8�

dQ

dr
+

Q

r
= 0 �2.9�

where Q is the shear force normal to the neutral axis. Substitution
of Eq. �2.5� into Eq. �2.7� yields

d2us

dr2 +
1

r

dus

dr
−

us

r2 = �1 + �s��s
dT

dr
−

1 − �s
2

Eshs
��1� �2.10�

Elimination of Q from Eqs. �2.8� and �2.9�, in conjunction with
Eq. �2.6�, gives

d3w

dr3 +
1

r

d2w

dr2 −
1

r2

dw

dr
=

6�1 − �s
2�

Eshs
2 ��1� �2.11�

The continuity of displacement across the film/substrate inter-
face requires

uf = us −
hs

2

dw

dr
�2.12�

Equations �2.4� and �2.10�–�2.12� constitute four ordinary differ-
ential equations for uf, us, w, and ��1�.

We can eliminate uf, us, andw from these four equations to
obtain the shear stress at the film/substrate interface in terms of
temperature as

��1� =

�
i=1

n Efi
hfi

1 − � f i

2 ��1 + �s��s − �1 + � f i
�� f i

�

1 + �
i=1

n

4
Efi

hfi

1 − � f i

2

1 − �s
2

Eshs

dT

dr
�2.13�

which is a remarkable result that holds regardless of boundary
conditions at the edge r=R. Therefore, the interface shear stress is
proportional to the gradient of temperature. For uniform tempera-
ture T=constant, the interface shear stress vanishes; i.e., ��1�=0.

Substitution of the above solution for shear stress ��1� into Eqs.
�2.11� and �2.10� yields ordinary differential equations for dis-
placements w and us in the substrate. Their solutions, at the limit
hf �hs are

dw

dr
= 6

1 − �s
2

Eshs
2 �

i=1

n Efi
hfi

1 − � f i

2 ��1 + �s��s − �1 + � f i
�� f i

�
1

r�0

r

	T�	�d	

+
B1

2
r �2.14�

us = �1 + �s��s

1

r�
0

r

	T�	�d	 +
B2

2
r �2.15�

where B1 and B2 are constants to be determined by boundary
conditions. The displacement in the thin films is then obtained
from Eq. �2.12� as

uf = �1 + �s��s

1

r�
0

r

	T�	�d	 + 	B2

2
−

hsB1

4

r �2.16�

The first boundary condition at the free edge r=R requires that
the net force vanish

�
i=1

n

Nr
�f i� + Nr

�s� = 0 at r = R �2.17�

which gives

Fig. 2 A schematic diagram of the nonuniform shear traction
distribution at the film/film and film/substrate interfaces
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B2 = �1 − �s��sT̄ �2.18�

for hf �hs, where T̄= �2 /R2��0
R	T�	�d	=��TdA /
R2 is the aver-

age temperature over the entire system. The second boundary con-
dition at the free edge r=R is vanishing of net moment, i.e.,

Mr −
hs

2 �
i=1

n

Nr
�f i� = 0 at r = R �2.19�

which gives

B1 = 6
1 − �s

2

Eshs
2 �

i=1

n Efi
hfi

1 − � f i

2 � �1 + v f i
��1 − vs�

1 + vs
��s − � f i

� − �vs − � f i
��s�T̄

�2.20�

2.2 Stresses in Multilayer Thin Films and System
Curvatures. The system curvatures are related to the out-of-plane
displacement w by �rr=d2w /dr2 and ���=dw /rdr. Their sum is
given by

�rr + ��� = 12
1 − �s

Eshs
2 �A�T̄ +

1 + �s

2
A���T − T̄�� �2.21�

where T̄ is the average temperature in the thin film/substrate sys-
tem, and

A�  �
i=1

n Efi
hfi

1 − v f i

��s − � f i
�

A��  �
i=1

n Efi
hfi

1 − v f i

2 ��1 + �s��s − �1 + � f i
�� f i

� �2.22�

The first term on the right-hand side corresponds to the �constant�
average temperature T̄, while the second term gives the deviation

T− T̄ from the constant temperature.
The difference between two system curvatures is

�rr − ��� = 6
1 − �s

2

Eshs
2 A���T −

2

r2�
0

r

	T�	�d	� �2.23�

As compared to the system curvatures for a single thin film �14�,
Eqs. �2.21� and �2.23� can be obtained by replacing the single film
properties by the sum of multilayer film properties in Eq. �2.22�.

The stresses in the ith thin film can be obtained from the in-
plane displacement uf as

�rr
�f i� + ���

�f i� =
Efi

1 − � f i

�2��s − � f i
�T̄ + ��1 + �s��s − 2� f i

��T − T̄��

�2.24�

�rr
�f i� − ���

�f i� =
Efi

1 + � f i

�1 + �s��s�T −
2

r2�
0

r

	T�	�d	�
�2.25�

They are identical to Huang and Rosakis �14� for a single thin film
if the Young’s modulus, Poisson’s ratio, and coefficient of thermal
expansion are substituted by Ei, vi, and �i of the ith thin film,
respectively. The shear stresses along the film/film or film/
substrate interface can be obtained from the equilibrium equation
�2.3�. Specifically, the shear stress of ith thin film is given by

��i� = �
j=i

n Ef j
hf j

1 − v f j

2 ��1 + vs��s − �1 + v f j
�� f j

�
dT

dr
�2.26�

where the summation is from the ith thin film to the last �nth�.

3 Extension of Stoney Formula for a Multilayer Thin
Film/Substrate System Subjected to Axisymmetric Tem-
perature Distribution

We extend the Stoney formula for a multilayer thin film/
substrate system by eliminating the nonuniform axisymmetric
temperature in order to establish a direct relation between the
stresses in the ith thin film and system curvatures. Both �rr−��� in
Eq. �2.23� and �rr

�f i�−���
�f i� in Eq. �2.25� are proportional to T

− �2 /r2��0
r	T�	�d	, and therefore can be directly related by

�rr
�f i� − ���

�f i� =
Eshs

2�s

6�1 − vs�

Efi

1 + v f i

�rr − ���

A��

�3.1�

where A�� is given in Eq. �2.22�. We define the average system
curvature �rr+��� as

�rr + ��� =
1


R2 � �
A

��rr + ����	d	d� =
2

R2�
0

R

	��rr + ����d	

�3.2�

which can be related to the average temperature T̄ by averaging
both sides of Eq. �2.21�, i.e.,

�rr + ��� = 12
1 − �s

Eshs
2 A�T̄ �3.3�

where A� is given in Eq. �2.22�. The deviation from the average
curvature �rr+���−�rr+��� can be related to the deviation from

the average temperature T− T̄ from Eq. �2.21� as

�rr + ��� − �rr + ��� = 6
1 − �s

2

Eshs
2 A���T − T̄� �3.4�

Elimination of temperature deviation T− T̄ and average tempera-

ture T̄ from Eqs. �3.3�, �3.4�, and �2.24� gives the sum of stresses
in the ith thin film in terms of curvature as

�rr
�f i� + ���

�f i� =
Eshs

2

6�1 − �s�

Efi

1 − v f i

��s − � f i

A�

�rr + ���

+
�1 + vs��s − 2� f i

�1 + vs�A��

��rr + ��� − �rr + �����
�3.5�

Equations �3.1� and �3.5� provide direct relations between stresses
in each thin film and system curvatures. Stresses at a point in each
thin film depend not only on curvatures at the same point �local
dependence�, but also on the average curvature in the entire sub-
strate �nonlocal dependence�.

The interface stress ��i� can also be directly related to system
curvatures via

��i� =
Eshs

2

6�1 − vs
2�

�
k=i

n Efk
hfk

1 − v fk

2 ��1 + vs��s − �1 + v fk
�� fk

�

A��

d��rr + ����
dr

�3.6�

This provides a remarkably simple way to estimate the interface
shear stress from radial gradients of the two nonzero system cur-
vatures.

4 Arbitrary Temperature Distribution
Similar to Huang and Rosakis �15� for a single thin film on a

substrate, we expand the arbitrary nonuniform temperature distri-
bution T�r ,�� to the Fourier series:
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T�r,�� = �
m=0

�

Tc
�m��r�cos m� + �

m=0

�

Ts
�m��r�sin m� �4.1�

where

Tc
�0��r� =

1

2

�

0

2


T�r,��d�

Tc
�m��r� =

1



�

0

2


T�r,��cos m�d�

and

Ts
�m��r� =

1



�

0

2


T�r,��sin m�d� �m � 1�

The analysis is similar to Huang and Rosakis �15�, except it is
now for multilayer thin films on a substrate.

The system curvatures are

�rr =
�2w

�r2 ��� =
1

r

�w

�r
+

1

r2

�2w

��2 �r� =
�

�r
	1

r

�w

��



The sum of system curvatures is related to the temperature by

�rr + ��� = 12
1 − �s

Eshs
2 �A�T̄ +

1 + �s

2
A���T − T̄� + �1 + �s�	 4

3 + �s
A�

− A��
�
m=1

�

�m + 1�
rm

R2m+2�cos m��
0

R

	m+1Tc
�m��	�d	

+ sin m��
0

R

	m+1Ts
�m��	�d	�� �4.2�

where T̄= �2 /R2��0
R	Tc

�0��	�d	= �1 /
R2���AT�	 ,�dA is the av-
erage temperature over the entire area A of the thin film, dA
=	d	d, and A� and A�� are given in Eq. �2.22�.

The difference between two curvatures, i.e., �rr−���, and the
twist �r� are given by

�rr − ��� = 6
1 − �s

2

Eshs
2 A���T −

2

r2�
0

r

	Tc
�0�d	 − �

m=1

�
m + 1

rm+2 	cos m��
0

r

	m+1Tc
�m�d	 + sin m��

0

r

	m+1Ts
�m�d	


− �
m=1

�

�m − 1�rm−2	cos m��
r

R

	1−mTc
�m�d	 + sin m��

r

R

	1−mTs
�m�d	
� + 6

1 − �s
2

Eshs
2 	 4

3 + �s
A� − A��
�

m=1

�
m + 1

Rm+2 �m	 r

R

m

− �m − 1�	 r

R

m−2�	cos m��

0

R

	m+1Tc
�m�d	 + sin m��

0

R

	m+1Ts
�m�d	
 �4.3�

�r� = 3
1 − �s

2

Eshs
2 A���− �

m=1

�
m + 1

rm+2 	sin m��
0

r

	m+1Tc
�m�d	 − cos m��

0

r

	m+1Ts
�m�d	
 + �

m=1

�

�m − 1�rm−2	sin m��
r

R

	1−mTc
�m�d	

− cos m��
r

R

	1−mTs
�m�d	
� − 3

1 − �s
2

Eshs
2 	 4

3 + �s
A� − A��
�

m=1

�
m + 1

Rm+2 �m	 r

R

m

− �m − 1�	 r

R

m−2�	sin m��

0

R

	m+1Tc
�m�d	

− cos m��
0

R

	m+1Ts
�m�d	
 �4.4�

As compared to the system curvatures for a single thin film �15�, Eqs. �4.2�–�4.4� can be obtained by replacing the film properties by
the sum of multilayer film properties in Eqs. �2.22�.

The sum of stresses �rr
�f i�+���

�f i� in the ith thin film is related to the temperature by

�rr
�f i� + ���

�f i� =
Efi

1 − � f i

�2��s − � f i
�T̄ + ��1 + �s��s − 2� f i

��T − T̄� + 2�1 − �s��s�
m=1

�
m + 1

R2m+2rm	cos m��
0

R

	m+1Tc
�m�d	

+ sin m��
0

R

	m+1Ts
�m�d	
� �4.5�

The difference between stresses, ie., �rr
�f i�−���

�f i�, and shear stress �r�
�f i� are given by

�rr
�f i� − ���

�f i� =
Efi

1 + � f i

�1 + �s��s�T −
2

r2�
0

r

	Tc
�0�d	 − �

m=1

�
m + 1

rm+2 	cos m��
0

r

	m+1Tc
�m�d	 + sin m��

0

r

	m+1Ts
�m�d	
 − �

m=1

�

�m

− 1�rm−2	cos m��
r

R

	1−mTc
�m�d	 + sin m��

r

R

	1−mTs
�m�d	
 − �

m=1

�
m + 1

Rm+2 �m	 r

R

m

− �m − 1�	 r

R

m−2�

�	cos m��
0

R

	m+1Tc
�m�d	 + sin m��

0

R

	m+1Ts
�m�d	
� �4.6�
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�r�
�f i� =

Efi

2�1 + � f i
�
�1 + �s��s�− �

m=1

�
m + 1

rm+2 	sin m��
0

r

	m+1Tc
�m�d	 − cos m��

0

r

	m+1Ts
�m�d	
 + �

m=1

�

�m − 1�rm−2	sin m��
r

R

	1−mTc
�m�d	

− cos m��
r

R

	1−mTs
�m�d	
 + �

m=1

�
m + 1

Rm+2 �m	 r

R

m

− �m − 1�	 r

R

m−2�	sin m��

0

R

	m+1Tc
�m�d	 − cos m��

0

R

	m+1Ts
�m�d	
� �4.7�

Equations �4.5�–�4.7� are identical to Huang and Rosakis �15� for a single thin film if the Young’s modulus, Poisson’s ratio, and
coefficient of thermal expansion are substituted by Ei, �i, and �i of the ith thin film, respectively.

The shear stresses �r
�i� and ��

�i� at the film/film and film/substrate interfaces are related to the temperature by

�r
�i� = �

j=i

n Ef j
hf j

1 − � f j

2 ��1 + �s��s − �1 + � f j
�� f j

�
�T

�r
+ 2��

j=i

n Ef j
hf j

1 − � f j

��s − � f j
� − �

j=i

n Ef j
hf j

1 − � f j

2 ��1 + �s��s − �1 + � f j
�� f j

���
m=1

�

m�m

+ 1�
rm−1

R2m+2	cos m��
0

R

	m+1Tc
�m�d	 + sin m��

0

R

	m+1Ts
�m�d	
 �4.8�

��
�i� = �

j=i

n Ef j
hf j

1 − � f j

2 ��1 + �s��s − �1 + � f j
�� f j

�
1

r

�T

��
− 2��

j=i

n Ef j
hf j

1 − � f j

��s − � f j
� − �

j=i

n Ef j
hf j

1 − � f j

2 ��1 + �s��s − �1 + � f j
�� f j

���
m=1

�

m�m

+ 1�
rm−1

R2m+2	sin m��
0

R

	m+1Tc
�m�d	 − cos m��

0

R

	m+1Ts
�m�d	
 �4.9�

where the summation is from the ith thin film to the last �nth�.

5 Extension of Stoney Formula for a Multilayer Thin
Film/Substrate System Subjected to Arbitrary Tem-
perature Distribution

We extend the Stoney formula for a multilayer thin film/
substrate system by establishing the direct relation between the
stresses in each thin film and system curvatures. Similar to Huang
and Rosakis �15� for a single thin film, we first define the coeffi-
cients Cm and Sm, related to the system curvatures by

Cm =
1


R2 � �
A

��rr + ����		

R

m

cos mdA

Sm =
1


R2 � �
A

��rr + ����		

R

m

sin mdA �5.1�

where the integration is over the entire area A of the thin film, and
dA=	d	d. Elimination of temperature gives the stresses in each
thin film in terms of system curvatures by

�rr
�f i� − ���

�f i� =
Eshs

2

6�1 − �s�

Efi

1 + � f i

�s

A��
��rr − ��� − �

m=1

�

�m + 1�

��m	 r

R

m

− �m − 1�	 r

R

m−2�

��Cm cos m� + Sm sin m��� �5.2�

�r�
�f i� =

Eshs
2

6�1 − �s�

Efi

1 + � f i

�s

A��
��r� +

1

2�
m=1

�

�m + 1��m	 r

R

m

− �m − 1�	 r

R

m−2��Cm sin m� − Sm cos m��� �5.3�

�rr
�f i� + ���

�f i� =
Eshs

2

6�1 − �s�

Efi

1 − � f i

��s − � f i

A�

�rr + ���

+
�1 + vs��s − 2� f i

�1 + vs�A��

��rr + ��� − �rr + ����

+ �3 + �s

1 + vs

�s − � f i

A�

− 2
�1 + �s��s − 2� f i

�1 + vs�A��
�

��
m=1

�

�m + 1�	 r

R

m

�Cm cos m� + Sm sin m���
�5.4�

where �rr+���=C0= �1 /
R2���A��rr+����dA is the average cur-
vature over entire area A of the thin film, and A� and A�� are
given in Eq. �2.22�. Equations �5.2�–�5.4� provide direct relations
between individual film stresses and system curvatures. It is im-
portant to note that stresses at a point in each thin film depend not
only on curvatures at the same point �local dependence�, but also
on the curvatures in the entire substrate �nonlocal dependence� via
the coefficients Cm and Sm.

The shear stresses �r
�i� and ��

�i� at the film/film and film/substrate
interfaces can also be directly related to system curvatures via
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This provides a way to determine the interface shear stresses from
the system curvatures. It also displays a nonlocal dependence via
the coefficients Cm and Sm.

6 Concluding Remarks
The analytical solution is obtained for a multilayer thin film/

substrate system subjected to arbitrary temperature distribution.
The stresses in each thin film and system curvatures are obtained
in terms of the temperature. The direct relation between the
stresses in each thin film and system curvatures is also obtained.
The dependence of the film stresses on curvatures is not generally
“local,” i.e., the stress components at a point on the film will
depend on both the local value of the curvature components �at
the same point� and on the value of curvatures of all other points
�nonlocal dependence�.

The presence of nonlocal contributions in such relations also
has implications regarding the nature of diagnostic methods
needed to perform wafer-level film stress measurements. Notably,
the existence of nonlocal terms necessitates the use of full-field
methods capable of measuring curvature components over the en-
tire surface of the plate system �or wafer�. Furthermore, measure-
ment of all independent components of the curvature field is nec-
essary. This is because the stress state at a point depends on
curvature contributions from the entire plate surface.

The nonuniform temperature distribution also results in shear
stresses along the film/film and film/substrate interfaces. The re-
lation between the shear stresses and system curvatures provides
an effective method to estimate the shear stresses. Since film

delamination is a commonly encountered form of failure during
wafer manufacturing, the ability to estimate the level and distri-
bution of such stresses from wafer-level metrology might prove to
be invaluable in enhancing the reliability of such systems.
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In prior work, Calsamiglia et al. (1999, “Anomalous Frictional
Behavior in Collisions of Thin Disks,” ASME J. Appl. Mech., 66,
pp. 146–152) reported experimental results of collisions between
thin plastic disks and a relatively rigid steel barrier. In those
experiments, it was observed that, contrary to a commonly held
assumption in rigid body collision modeling, the ratio of tangen-
tial to normal components of the contact impulse could be sub-
stantially less than the friction coefficient even for collisions
where the disk contact point did not reverse its velocity direction
(i.e., for sliding collisions). In those experiments, the disk’s edges
were rounded to make the contact less sensitive to machining
imperfections. While such impact/contact is nominally at a single
point, the rounded edges make the interaction three dimensional
(from the view point of analyzing deformations). Here, we revisit
that problem computationally, but model the edges as flat, making
the problem two dimensional. Our finite element calculations
(ABAQUS) do not reproduce the anomalous frictional interactions
observed in those experiments, suggesting that rounding of the
edges, among other possibilities, may have played a significant
role in the experimental results. �DOI: 10.1115/1.2793131�

Keywords: rigid body collision, sliding collision, friction, disks

1 Introduction
In prior work, Calsamiglia et al. �1� reported experimental re-

sult of collision experiments involving thin disks with a rigid bar-
rier. They studied plain disks, disks with holes in them, as well as
disks with smaller disks glued on to them. The disks were made of
Delrin �a plastic�, and the “rigid barrier” was a steel plate. The
disks slid on a near-frictionless air table.

In those experiments, it was observed that, contrary to a com-
monly held assumption in rigid body collision modeling, the ratio
of tangential to normal components of the contact impulse could
be substantially less than the friction coefficient even for colli-
sions where the disk contact point did not reverse its velocity
direction �i.e., for sliding collisions�. Just into the sliding regime,
wherein the contact point velocity has the same direction before
and after impact, the ratio of impulses was about half ��0.08� of
the separately measured friction coefficient � ��0.16 or 0.18�.
The ratio of impulses, using a fitted line extrapolated to grazing
incidence, predicted an impulse ratio of about 0.16 in that limit. In
those experiments, also, the disk’s edges were rounded to make
the contact point location less sensitive to machining imperfec-
tions. From the viewpoint of examining the details of the defor-

mation in the disks, however, this made the interaction three di-
mensional.

Here, we revisit the frictional sliding collision of a disk with a
rigid barrier using finite element computations �ABAQUS�, but take
the disk’s edges as flat, and model the disk’s deformation as two
dimensional �plane stress�. Our aim here is to see if such a two-
dimensional model reproduces the anomalous frictional interac-
tions observed in the experiments �1�.

With a view to motivating the analysis presented below, we
consider a hypothetical collision with a rigid barrier of a deform-
able body wherein all deformations are strongly localized in a
small region, of negligible inertia, surrounding the nominal con-
tact point. The microscopic near-contact region, in essence, medi-
ates the interaction between the rigid barrier and a perfectly rigid
body �for extended related discussion see Chatterjee and Ruina
�2,3��. Under these assumptions, the dynamics during contact is
governed by global inertia properties of the “rigid” body, local
deformation behavior of the contact region, and friction. In this
context, note that in the experiments �1�, changing the inertia
properties �changing the radius of gyration without changing the
outer radius� did not have a significant effect. Thus, the anoma-
lous frictional interaction observed in these experiments may, it
seems, be largely a consequence of contact friction and local de-
formation behavior.

For purposes of approximate modeling of impacts in, say,
granular flows, the relatively small friction coefficient may well
play a correspondingly small role in important aspects of the over-
all dynamics. For this reason, perhaps, some readers of Ref. �1�
have taken active note only of a single data point where the coef-
ficient of normal restitution appears to slightly exceed unity, and
conclusively demonstrated such extra bounce both in experiment
and simulation �4,5�. However, comparable investigations, cor-
roborative or otherwise, of the anomalous frictional interaction
have not yet been reported in the literature. We mention that
Stronge has noted the mismatch in frictional interaction, but
looked at the data in the context of his own simplified rigid body
collision model �see Ref. �6�, especially Fig. 5.15, p. 109�; he has
obtained a horizontal line, drawn through the rising data points,
that serves his modeling purposes. In this context, the experimen-
tal data raise a question in the mechanics of deformable solids �as
opposed to rigid bodies, however modeled�; the answer to this
question lies outside the rigid body collision models. It is with this
motivation that we undertake a detailed elastodynamic simulation
of some contact interactions that seem relevant to the experiments.

In this work, we model the contact using Coulomb friction,
which we expect to give reasonable results. There is consistency
in the impulse ratios observed in the experiments for several disks
with different inertia properties, indicating that the experimental
observation is in some sense robust: it might survive under small
errors in the friction modeling. The local deformation behavior in
the disks poses more difficult questions. For example, since the
disks are flat and thin, can elastodynamics in two dimensions
capture this behavior? Or, since the edges are rounded, is elasto-
dynamics in three dimensions needed to capture this behavior? Is
dissipation �e.g., viscoelastic behavior� or material nonlinearity
�e.g., plastic deformation� crucial? We do not know.

In this brief note, we report the results of the most straightfor-
ward investigation possible, namely, that of a purely elastic disk in
plane stress hitting a rigid barrier. A more detailed and careful
study of the three-dimensional interaction, we hope, may be un-
dertaken in the future. The present two-dimensional calculations,
which do not reproduce the experimentally observed anomalous
behavior, serve to motivate that computationally more demanding
three-dimensional study.

2 Model Details
We have used ABAQUS Version 6.5 �explicit� for all finite ele-

ment calculations. We modeled the circular disk in two dimen-
sions �plane stress� with high mesh refinement near the contact
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region, with 1920 elements of the four noded quadrilateral type.
The rigid barrier’s surface is represented as such in the model, as
allowed by the software �7�.

The geometrical and material properties of the disk are purely
notional, because the outcome of the calculation is determined by
disk radius, density, Young’s modulus, and velocity magnitude �all
four have physical units�, as well as the material’s Poisson’s ratio,
the incident velocity direction and the Coulomb friction coeffi-
cient �all three quantities are dimensionless�. Of the first four
quantities, we will demonstrate negligible dependence on velocity
magnitude, leaving only three important dimensional quantities.
By suitably choosing units of mass, length, and time, these three
may be assigned any arbitrary positive values we like. The diam-
eter and thickness of the disk were taken as 40 mm and 1 mm,
respectively �the software asks for a thickness even for plane
stress, but the thickness is irrelevant for our purposes�. The disk
material’s Young’s modulus was arbitrarily chosen as E=210
�109 N /m2 �which matches steel, not plastic, but is inconsequen-
tial anyway�, Poisson’s ratio was �=0.3, and density was �
=7800 kg /m3 �again, steel instead of plastic�. Note that in the
experiment the plastic disks collided against a steel barrier, which
being much stiffer may be treated as rigid. In our model, the
barrier was treated as rigid as well. The friction coefficient was
taken as 0.2 �in Ref. �1�, it was between about 0.16 and 0.18�.

In our simulations, we considered three velocity magnitudes
�0.4 m /s, 1.0 m /s, and 1.5 m /s�. For each velocity magnitude
held constant, the incidence angle � was varied. Therefore, the
normal component of collision of precollision contact velocity
was proportional to cos �. The initial angular velocity of the disk
was zero in every case.

3 Calculation Details
We used ABAQUS’s explicit solver. The contact time was first

estimated for each impact configuration using one calculation with
a reasonably small time step �the contact time was found to be on
the order of 75–85 microseconds�. Then the calculation was re-
done so that there were 5000 time steps within the estimated con-
tact time to ensure acceptable accuracy.

At the end of each impact, there were residual vibrations in the
disk. As a result, the postcollision velocity of the central node of
the disk was not an accurate representation of the corresponding
rigid body velocity. To eliminate the effect of these postcollisional
residual vibrations �which would damp out rapidly in a real ma-
terial�, we numerically computed the integral of density times
velocity over the disk volume �element by element, using a sepa-
rate routine� to find the net postcollision momentum of the disk.
The postcollision velocity of the disk center of mass was then
obtained upon dividing by the disk mass. The difference between
this calculated velocity �which we used� and the instantaneous
velocity of the central node was typically found to be on the order
of 1% or 2%.

The quantities calculated for comparison with Ref. �1� were
normal and tangential restitution coefficients as well as the tan-
gential to normal contact impulse ratio.

Normal restitution is computed directly using center of mass
velocities. Tangential restitution calculations are more indirect.

First, using the change in the center of mass velocity, the im-
pulse components are found. This gives the impulse ratio.

The tangential impulse component also gives the impulsive mo-
ment about the disk center, which in turn gives the change in the
angular velocity of the disk. The postcollision contact point veloc-
ity is then calculated, and the tangential restitution coefficient ob-
tained.

4 Results
In the range of velocities studied, it was found that results did

not significantly depend on the velocity magnitude. This is con-

sistent with the almost-linear nature of two-dimensional contact
mechanics, where the nonlinearity involves a logarithmic term
�weak function� �8�.

The coefficient of normal restitution e, defined as ratio of nor-
mal separation velocity to normal approach velocity, ranged be-
tween 0.991 and 0.996 for all three velocities shown in Fig. 1. It
showed no significant dependence on incidence angle, consistent
with Ref. �1�.

The coefficient of tangential restitution, commonly used in
modeling disk collisions and often assumed a constant �4,9�, was
found to vary significantly with incidence angle within the nons-
liding regime �i.e., where the tangential velocity of the contact
point reverses direction�. These results �see Fig. 2� are qualita-
tively and loosely consistent though not identical with the experi-
mental results of Ref. �1�.

The impulse ratio was found to increase roughly linearly with
incidence angle �measured from normal� up to about 50 deg and
flatten out at about 0.2 thereafter �Fig. 3�. In particular, for sliding
collisions �in the sense used in rigid body collision modeling, i.e.,
where the tangential velocity of the contact point does not reverse
direction�, the impulse ratio is essentially equal to the friction
coefficient. The value slightly larger than 0.2 at an incidence angle

Fig. 1 Normal restitution coefficient

Fig. 2 Tangential restitution coefficient
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of 80 deg is about 0.204, and its difference from 0.2 may be taken
as representative of the numerical errors incurred in the finite
element solution. The impulse ratios obtained do not match the
experimental results of Ref. �1�.

5 Discussion
The primary mismatch with the experimental results is in the

impulse ratio. In Ref. �1�, the disk’s edges were rounded. Thus, we
speculate that the contact behavior of those disks might be thought
of as composed of an initially very soft three-dimensional Hertz
contact in series with an initially much stiffer two-dimensional
Hertz contact. For higher loads, the three-dimensional contact
stiffens up much faster than the two-dimensional one. For sliding
collisions that are yet far from grazing incidence, it seems likely
that the tangential contact forces called into play are weak �recall
that the friction coefficient is 0.2, so the tangential forces are in
any case never more than a fifth of the net normal forces�. Then

the tangential compliance encountered is much higher than the
normal compliance; tangential sticking is possible for a relatively
short duration during which the normal stiffness is quickly able to
reverse the normal velocity component and terminate the colli-
sion. Finally, the localized tangential deformation near the contact
region is suddenly released with no real consequence, and the disk
in the experiment emerges from what looks like a sliding collision
but where the impulse ratio is less than �. The lack of such a
significant difference between effective tangential and normal
compliances in the purely two-dimensional case studied numeri-
cally in this note may be the reason why the anomalous frictional
interaction observed in the experiments is not observed here. A
full three-dimensional finite element model of impacting disks
with rounded edges will be much more computationally demand-
ing than the calculation presented here, but may shed further light
on this problem in future work.

It must be acknowledged, however, that �barring some unlikely
combination of experimental errors that might have conspired to
suggest an anomaly where none exists� there are other possible
explanations for the experimental results, chiefly material dissipa-
tion and nonlinearity.
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A new rotating beam finite element is developed in which the basis
functions are obtained by the exact solution of the governing
static homogenous differential equation of a stiff string, which
results from an approximation in the rotating beam equation.
These shape functions depend on rotation speed and element po-
sition along the beam and account for the centrifugal stiffening
effect. Using this new element and the Hermite cubic finite ele-
ment, a convergence study of natural frequencies is performed,
and it is found that the new element converges much more rapidly
than the conventional Hermite cubic element for the first two
modes at higher rotation speeds. The new element is also applied
for uniform and tapered rotating beams to determine the natural
frequencies, and the results compare very well with the published
results given in the literature. �DOI: 10.1115/1.2775497�

Keywords: rotating beams, finite element method, free vibration,
basis function, string

1 Introduction
The prediction of natural frequencies of a rotating beam is an

important practical problem and is often done using the finite
element method �FEM� �1,2�. An accurate approach to develop a
finite element which has been recently proposed in the literature is
to select shape functions which satisfy the static part of the ho-
mogenous governing differential equation for the problem �3�. In
this paper, we seek to develop new shape functions using the exact
solution of the governing static differential equation of a stiff
string �4�. In order to simplify the analysis required to derive the
shape functions, the centrifugal force is assumed as a constant for
an element, which leads to the rotating beam equation becoming
the stiff-string equation within the element due to the constant
applied tension. Fortunately, the stiff-string equation captures the
effect of the centrifugal force and is also analytically solvable.

2 Rotating Beam and Stiff-String Equation
The schematic of a tapered rotating beam is shown in Fig. 1.

The partial differential equation for free vibration of a rotating
beam is given by �1�

�EI�x�w��� + m�x�ẅ − �T�x�w��� = 0 �1�

where T�x�=�x
Lm�x� �2�R+x�dx+F is the centrifugal tensile load

at a distance x from the axis of rotation, EI�x� is the flexural

stiffness, m�x� is the mass per unit length, w is the bending dis-
placement, � is the rotation speed, R is the hub radius, L is the
beam length, and F is the axial force at the end of the beam.
Ignoring the inertia term in Eq. �1� yields the static homogeneous
equation, which for a uniform beam reduces to

�EIw��� − �T�x�w��� = 0 �2�

where T�x�=m�2�R�L−x�+ �L2−x2� /2�+F. The complicated ex-
pression for the T�x� term makes it possible to only obtain series
solutions of Eq. �2�. Most works on rotating beams use cubic
shape functions, which result from the solution EIw�=0, which
means that the second term in Eq. �2� is completely ignored. In-
stead, let us consider an approximation which computes the cen-
trifugal stiffening terms in an approximate sense: T�x�=T
=constant. This approximation effectively reduces the rotating
beam Eq. �1� to the stiff-string equation given by �4�

�EIw��� + mẅ − Tw� = 0 �3�
The static homogenous form of Eq. �3� is

�EIw��� − Tw� = 0 �4�
Until this point, no finite element discretization has been intro-
duced and the process of assuming a constant tension as an ap-
proximation to the centrifugal stiffening effect may appear to be
rather crude. However, if we consider the beam to be divided into
N finite elements, T could be assumed to be constant within the
element. The constant tension approximation would then become
increasingly realistic as the number of elements increase. For an
ith element along the beam, the relation between local coordinate
�x̄� and global coordinate �x� from Fig. 1 is given by x=xi+ x̄,
where xi=� j=1

i−1lj. For a uniform mesh used in this paper, xi= �i
−1�l. Using x=xi+ x̄ and assuming EI=EIi=constant for an ele-
ment, and with the tension within the element as a constant �Ti�,
Eq. �4� can be expressed as

d4w

dx̄4 − Ci
2d2w

dx̄2 = 0 �5�

where Ci=�Ti /EIi. Equation �5� is the governing static homog-
enous differential equation of a stiff string in terms of the element
coordinate for element i. The constant Ti in the expression of Ci
for an element is approximated by taking the maximum centrifu-
gal tension that an element undergoes. The maximum centrifugal
tension Ti for an ith element can be expressed as

Ti =�
xi

L

mi�x��2�R + x�dx + F = �
j=i

j=N �
xj

xj+1

mj�x��2�R + x�dx + F

�6�

Here, xi is the location of the left edge of the element i and
xN+1=L. The solution of Eq. �5� is used as the displacement field,

w�x� = a0 + a1x̄ + a2e−Cix̄ + a3eCix̄ �7�

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the
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Sanjay Govindjee. Fig. 1 Rotating tapered beam element geometry
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3 Stiff-String Basis Functions
Consider the two noded, four degree of freedom beam finite

element shown in Fig. 2. The boundary conditions for the element
of length l are given by w�0�=w1, dw�0� /dx̄=�1=w2, w�l�=w3,
and dw�l� /dx̄=�2=w4. Putting Eq. �7� into the element boundary
conditions yields w1=a0+a2+a3, w2=a1−Ca2+Ca3, w3=a0+a1l
+a2e−Cl+a3eCl, and w4=a1−a2Ce−Cl+a3CeCl. Here, we have
dropped the subscript i in C as the entire discussion here is rel-
evant within the element. Solving for a0, a1, a2, and a3 in terms of
the nodal displacements and slopes using the above expressions,
w can be approximated by

w = w1N1 + w2N2 + w3N3 + w4N4 �8�

where N1, N2, N3, and N4 are the shape functions and are given as

N1 =
R1�x̄�

D
N2 =

R2�x̄�
CD

N3 =
R3�x̄�

D
N4 =

R4�x̄�
CD

�9�

where

D = − 4 + 2eCl + 2e−Cl + Ce−Cll − CleCl �10�

R1�x̄� = − �− eCl − e−Cl − Ce−Cll + 2 + CleCl + Cx̄e−Cl − Cx̄eCl

− e−Cx̄+Cl + e−Cx̄ + eCx̄ − eCx̄−Cl� �11�

R2�x̄� = eCl − CleCl − e−Cl − Ce−Cll + Cx̄eCl + Cx̄e−Cl − 2Cx̄

− e−Cx̄+Cl + e−Cx̄+ClCl + e−Cx̄ + eCx̄−Cl + eCx̄−ClCl − eCx̄

�12�

R3�x̄� = �eCl + e−Cl − 2 + Cx̄e−Cl − Cx̄eCl − e−Cx̄+Cl + e−Cx̄ + eCx̄

− eCx̄−Cl� �13�

R4�x̄� = �2Cl − eCl + e−Cl − 2Cx̄ + Cx̄eCl + Cx̄e−Cl − e−Cx̄Cl − e−Cx̄

+ e−Cx̄+Cl + eCx̄ − eCx̄Cl − eCx̄−Cl� �14�

We call these the stiff-string basis functions. For a vibration analy-
sis of a stiff string, these basis functions satisfy the static homog-
enous part of the governing differential equation and therefore
yield all the favorable properties discussed in Ref. �3�. For a ro-
tating beam, their use is an approximation, which will be justified
by numerical studies later in this paper. Note that the stiff-string
basis functions are now also a function of the nondimensional
rotational speed, element mass and stiffness, mass of outboard
elements, beam length, and location of the element due to their
dependence on C=�Ti /EIi. These shape functions therefore cap-
ture the effect of the rotation speed on the element displacements
as well as the fact that different locations contribute differently to
the centrifugal stiffening effect.

Fig. 2 Beam element

Fig. 3 Variation of shape functions along the elements „N=1, �=12… with the new and conventional
finite elements at high rotation speed
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The analytical limits of the stiff-string basis functions as the
rotation speed tends to zero are shown in Eqs. �15� and �16� as the
Hermite cubics,

lim
C→0

N1 =
2x3 − 3x2l + l3

l3 lim
C→0

N2 =
x3 − 2x2l + xl2

l2 �15�

lim
C→0

N3 =
− 2x3 + 3x2l

l3 lim
C→0

N4 =
− x2l + x3

l2 �16�

As the rotation speed tends to infinity, the basis functions N1 and
N3 become linear and N2 and N4 approach zero, as given in

lim
C→�

N1 = 1 −
x̄

l
lim
C→�

N2 = 0 lim
C→�

N3 =
x̄

l
lim
C→�

N4 = 0

�17�

The variation of the shape functions along the elements �N=1� is
shown in Figs. 3 and 4 with the conventional Hermite cubic and
the stiff-string basis functions at high ��=12� and very high ��
=200� rotation speeds, respectively ��2=m�2L4 /EI�. The differ-
ence between the two shape functions is clear. These shape func-
tions therefore capture the effect of the rotation speed on the ele-
ment displacements. As the rotation speed rises, the stiff-string
basis functions become almost linear and the rotating beam ap-
proaches a rotating string, as is clear from Eq. �17�. One can also
observe from Eq. �5� that when Ti=0, w can be represented as a
cubic polynomial and when Ti→�, the second term dominates
and w is a linear function.

4 Numerical Results
The stiff-string basis functions are used to develop the finite

element equations for a free vibration of the rotating beam, and
numerical results are obtained for a uniform beam and a tapered
beam.

4.1 Uniform Beam. Tables 1 and 2 show a comparison of
nondimensional natural frequencies of a rotating uniform cantile-
ver and hinged beam, respectively, with results from Refs. �1,5,6�.
Convergence for the first five modes was achieved using 75 uni-
form finite elements, and the results compare well.

The new element is now compared with the conventional ele-
ment with cubic basis functions. A convergence study is done at
two different rotation speeds ��=12 and �=200� on the first three
modes since they are critical for dynamic modeling, and modes
higher than 3 show little effect of rotation �2�. For the �=12
results in Fig. 5, the convergence of the first mode is extremely

Table 1 Comparison of nondimensional natural frequencies of
cantilever uniform beam

Mode
Present
FEM

Wang and
Wereley �6�

Wright
et al. �5�

Hodges and
Rutkowsky �1�

�=12
1 13.1702 13.1702 13.1702 13.1702
2 37.6031 37.6031 37.6031 37.6031
3 79.6145 79.6145 79.6145 79.6145
4 140.534 140.534 140.534 N/A
5 220.537 220.536 220.536 N/A

Fig. 4 Variation of shape functions along the elements „N=1, �=200… with the new and conventional
finite elements at very high rotation speed
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good, though the second and third modes show slower conver-
gence. For the �=200 results in Fig. 6, convergence of the second
mode also shows an improvement.

4.2 Tapered Rotating Beam. Consider the tapered beam
used in Ref. �1� with m���=m0�1−0.5�� and EI���=EI0�1
−0.5��3. Here, m0 and EI0 correspond to the value of mass per
unit length and flexural rigidity at the thick end of the beam ��
=0�, respectively. Table 3 shows the present results and those in
Refs. �1,6�. The comparison is very good.

5 Conclusions
In the present paper, new shape functions are derived for rotat-

ing beams by using the exact solution of the homogenous part of
the governing static differential equation of a stiff string. In this
case, the shape functions are not only functions of the element
length but are also functions of the rotation speed, element loca-
tion across the beam, element mass and stiffness, mass of out-
board elements, and length of the beam. The element shows su-
perior convergence of the first two modes at high rotation speed

Table 2 Comparison of nondimensional natural frequencies of
hinged uniform beam

Mode
Present
FEM

Wang and
Wereley �6�

Wright and
Rutkowsky �5�

�=12
1 12.0000 12.0000 12.0000
2 33.7603 33.7603 33.7603
3 70.8373 70.8373 70.8373
4 126.431 126.431 126.431
5 201.123 201.122 201.122

Fig. 5 Convergence of the natural frequencies with �=12

Fig. 6 Convergence of the natural frequencies with �=200
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over the conventional Hermite cubics and also presents a new
shape function for rotating beams, which capture the effect of
centrifugal force and element location. The poor convergence of
the fundamental mode at high rotation speeds using the cubic
polynomials is solved by using the stiff-string basis functions.
This new element is also applied to determine the natural frequen-
cies of uniform and tapered rotating beams, and the results com-
pare very well with the published results.
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We consider the dynamical response of a finite, simply supported
Timoshenko beam loaded by a force moving with a constant ve-
locity. The classical solution for the transverse displacement and
the rotation of the cross section of a Timoshenko beam has a form
of a sum of two infinite series, one of which represents the force
vibrations (aperiodic vibrations) and the other one free vibrations
of the beam. We show that one of the series, which represents
aperiodic (force) vibrations of the beam, can be presented in a
closed form. The closed form solutions take different forms de-
pending if the velocity of the moving force is smaller or larger
than the velocities of certain shear and bar velocities.
�DOI: 10.1115/1.2775500�

Keywords: Timoshenko beam, moving force, vibrations

1 Introduction
The problem of a dynamic response of a structure subjected to

moving loads is interesting and important. This problem occurs in
dynamics of bridges, roadways, railways, and runways as well as
missiles and aircrafts. Different types of structures and girders
such as beams, plates, shells, and frames have been considered.
Also, different models of moving loads have been assumed �1�.
Deterministic and stochastic approaches have been presented
�2,3�. It would be interesting to study the problem of the dynamic
response of Timoshenko beam to moving loads. This problem has
been considered, among others, in Refs. �4–15�. In the paper, we
study dynamic response of a finite, simply supported Timoshenko
beam subject to a moving force. The classical solution of the
response of a finite, simply supported beam subjected to a force
moving with a constant velocity, has a form of an infinite series.
The main goal of this paper is to show that in the case when the
finite, simply supported Timoshenko beam is loaded by a single
force moving with a constant velocity, the aperiodic part of the
solution can be presented in a closed form instead of an infinite
series. Using the method of superposed deflections, Kązkowski
�16� has shown for a simply supported Euler-Bernoulli beam that
the aperiodic part of the solution can be presented in a closed
form. Next, Reipert obtained a closed form solution for a beam
with arbitrary boundary conditions �17� and for a frame �18�. In
this paper, we use a different method to obtain the solutions in a
closed form. The presented method of finding a solution in a
closed form is based on the observation that the solution of the
system of partial differential equations in the form of an infinite
series is also a solution of an appropriate system of ordinary dif-
ferential equations. This original method can also be applied in the
analysis of vibrations of other types of girders loaded by moving
forces. For a finite, simply supported Timoshenko beam, closed
forms of the solutions take different forms whether the velocity of

the moving force is smaller or larger than the velocities of certain
shear wave and bar velocity. This follows from the fact that for
Timoshenko beam �contrary to Euler-Bernoulli beam�, wave phe-
nomena can occur.

2 Vibration of a Timoshenko Beam Under a Moving
Force

2.1 Classical Solution. We consider vibrations of a simply
supported Timoshenko beam of finite length l subjected to a force
P moving with a constant velocity v. Vibrations of a beam are
described by the equations

−
GA

�

�2w�x,t�
�x2 +

GA

�

���x,t�
�x

+ A�
�2w�x,t�

�t2 = P��x − vt� �1�

EI
�2��x,t�

�x2 +
GA

�

�w�x,t�
�x

−
GA

�
��x,t� − I�

�2��x,t�
�t2 = 0 �2�

where A and I denote the cross-section area and inertia momen-
tum, respectively, E and G are the Young modulus and shear
modulus, respectively, � is the shear coefficient, � is the density,
and ��·� is the Dirac delta.

The functions w�x , t� and ��x , t� describe the transverse dis-
placement and the rotation of the cross section of the beam, re-
spectively. The bending moment M�x , t� and the shear force
Q�x , t� are described by the relations

M�x,t� = − EI
���x,t�

�x
Q�x,t� =

GA

�
� �w�x,t�

�x
− ��x,t�� �3�

For a finite, simply supported beam, the boundary conditions have
the forms

w�0,t� = w�l,t� = 0 � ���x,t�
�x

�
x=0

= � ���x,t�
�x

�
x=l

= 0 �4�

where l is the span length.
After introducing the dimensionless variables

� =
x

l
T =

vt

l
� � �0,1� T � �0,1� �5�

Eqs. �1� and �2� take the form

− wII��,T� + l�I��,T� + �2ẅ��,T� = P0��� − T� �6�

lwI��,T� − l2���,T� + r2�2�II��,T� − r2�2�̈��,T� = 0 �7�

where �=v /vs, �=vg /vs, r=�I /A, P0= Pl� /AG, vs=�G /��, and
vg=�E /�. Roman numerals denote differentiation with respect to
the spatial coordinate � and dots denote differentiation with re-
spect to time T. For elastic materials, the inequality vg�v ��
�1� holds true. The quantities vs and vg represent the shear wave
velocity and bar velocity, respectively.

The boundary conditions have the forms

w�0,T� = w�1,T� = 0 �I�0,T� = �I�1,T� = 0 �8�

Let the initial conditions have the forms

w��,0� = 0 ẇ��,0� = 0 ���,0� = 0 �̇��,0� = 0 �9�

The response of the beam w�� ,T� and ��� ,T� for boundary con-
ditions �8� is assumed to be in the form of sine and cosine series

w��,T� = 	
n=1

	

yn�T�sin n
� �10�
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���,T� = 	
n=1

	

�n�T�cos n
� �11�

After substituting expressions �10� and �11� into Eqs. �6� and �7�
and using orthogonality method �1�, we obtain the set of ordinary
differential equations

ÿn�T� +
�n
�2

�2 yn�T� −
l�n
�

�2 �n�T� =
2P0

�2 sin�n
T� �12�

�̈n�T� + � l2

r2�2 +
�2

�2 �n
�2��n�T� +
l�n
�
r2�2 yn�T� = 0 �13�

These functions fulfill the initial conditions

yn�0� = 0 ẏn�0� = 0 �n�0� = 0 �̇n�0� = 0 �14�

Finally, the solutions of the system of Eqs. �6� and �7� are the
sums of the particular integrals wA= �� ,T�, �A�� ,T� and general
integrals wS�� ,T� and �S�� ,T� and have the forms

w��,T� = wA��,T� + wS��,T�

= 2P0	
n=1

	
��n
�2r2��2 − �2� + l2�sin n
T sin n
�

�n
�2��n
�2�1 − �2�r2��2 − �2� − l2�2�

+ 	
n=1

	

�An sin rnT + Bn sin snT�sin n
� �15�

and

���,T� = �A��,T� + �S��,T�

= 2P0l	
n=1

	
sin n
T cos n
�

�n
���n
�2�1 − �2�r2��2 − �2� − l2�2�

+ 	
n=1

	

�Cn sin rnT + Dn sin snT�cos n
� �16�

where

rn,sn = �2/2r��l2 + r2�n
�2�1 + �2� � ��l2 + r2�n
�2�1 − �2���l2 + r2�n
�2�1 + �2��

The constants An ,Bn ,Cn ,Dn can be found from the initial condi-
tions �14�, and have the forms

An =
− 2P0
��n
�2 − �2sn

2���n
�2r2��2 − �2� + l2� − l2�n
�2�
�n
��2rn�rn

2 − sn
2���n
�2�1 − �2�r2��2 − �2� − l2�2�

�17�

Bn =
2P0
��n
�2 − �2rn

2���n
�2r2��2 − �2� + l2� − l2�n
�2�
�n
��2sn�rn

2 − sn
2���n
�2�1 − �2�r2��2 − �2� − l2�2�

and

Cn =
��n
�2 − rn

2�2�
l�n
�

An

�18�

Dn =
��n
�2 − sn

2�2�
l�n
�

Bn

2.2 Closed Form Solutions. The functions wA�� ,T� and
�A�� ,T� are aperiodic vibrations and fulfill Eqs. �6� and �7�, but,
do not satisfy the initial conditions �9� and wS�� ,T� and �S�� ,T�
are free vibrations of the beam and satisfy homogeneous analogs
of Eqs. �6� and �7�. Now, we will present the aperiodic solutions
wA�� ,T� and �A�� ,T� given by the first series in expressions �15�
and �16� in the closed forms.

Let us notice an important fact that these functions are solutions
not only to the system of partial differential equations �6� and �7�
but also to the system of ordinary differential equations

− �1 − �2�wA
II��,T� + l�A

I ��,T� = P0��� − T�
�19�

lwA
I ��,T� − l2�A��,T� + r2��2 − �2��A

II��,T� = 0

for the boundary conditions �8�.
The variable T in Eqs. �19� is the only parameter, which de-

scribes the location of the moving force on the beam. The system
of Eqs. �19� has been created from the system of the partial dif-
ferential equations �6� and �7� by changing differentiation with
respect to the time T to differentiation with respect to the geo-
metrical coordinate �, namely,

ẅA��,T� → wA
II��,T� and �̈��,T� → �A

II��,T�

After solving Eqs. �19� using, for example, the Laplace transform,
we can obtain the functions wA�� ,T� and �A�� ,T� in the closed
form instead of a series. The closed form of the solutions depends
on the velocity of moving force.

In the case if �1 or ��� when the velocity of the force is
smaller than the velocity of the shear wave ��1� or larger than
the bar velocity �����, the solutions have the forms

wA��,T� =
P0

�1 − �2��2

sin ��1 − T�sin ��

� sin �
−

P0

�2 �1 − T�� for � � T

�20�

wA��,T� =
P0

�1 − �2��2

sin �T sin ��1 − ��
� sin �

−
P0

�2 T�1 − �� for � � T

and

�A��,T� = −
P0

2l�2 +
P0 sin ��1 − T�cos ��

l�2 sin �
for �  T

�21�

�A��,T� =
P0

2l�2 −
P0 sin �T cos ��1 − ��

l�2 sin �
for � � T

where �2= l2�2 / �r2�1−�2���2−�2��.
In the case when the velocity of the moving force is equal to the

velocity of the shear wave, so v=vs since �=1, we have

wA��,T� = − P0�1 − T�� − P0r2��2 − 1���� − T� for � � T
�22�

wA��,T� = − P0T�1 − �� − P0r2��2 − 1���� − T� for � � T

and

�A��,T� = −
P0

2l
for �  T

�23�

�A��,T� =
P0

2l
for � � T

The solution �22� has a Dirac delta singularity and the function
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�23� is discontinuous in the point �=T.
In the case when the velocity of the moving force is equal to the

bar velocity v=vg ��=��, the solutions have the forms

wA��,T� = −
P0

�2 �1 − T�� for �  T

�24�

wA��,T� = −
P0

�2 T�1 − �� for � � T

and

�A��,T� = −
P0

2l�2 for �  T

�25�

�A��,T� =
P0

2l�2 for � � T

If the velocity of the moving force is in the range vsvvg �1
���, the solutions for the aperiodic vibration have the forms

wA��,T� =
P0

�1 − �2��2

sh��1 − T�sh��

�sh�
−

P0

�2 �1 − T�� for � � T

�26�

wA��,T� =
P0

�1 − �2��2

sh�Tsh��1 − ��
�sh�

−
P0

�2 T�1 − �� for � � T

and

�A��,T� = −
P0

2l�2 +
P0

l�2

sh��1 − T�ch��

sh�
for �  T

�27�

�A��,T� =
P0

2l�2 −
P0

l�2

sh�Tch��1 − ��
sh�

for � � T

where �2= l2�2 / �r2��2−1���2−�2��.
Let us notice that when the condition

l2�2

�1 − �2�r2��2 − �2�
= 
2 �28�

is fulfilled, then the solutions �15� and �16�, and also �20� and �21�
tend to infinity. Thus, the critical velocity vcr is equal to

vcr =
1

�2
r
��l2 + r2
2�vs

2 + r2
2vg
2 − ���l2 + r2
2�vs

2 + r2
2vg
2�2 − 4r2
4vs

2vg
2 �29�

The closed form solution is particularly important for a bending
moment and shear force. For example, if the velocity v of the
moving force is smaller than the velocity vs of the shear wave
��1�, the bending moment and shear force have the forms

M��,T� = MA��,T� −
EI

l 	
n=1

	

�n
��Cn sin rnT + Dn sin snT�sin n
�

�30�

where

MA��,T� =
− P0EI� sin ��1 − T�sin ��

l2�2 sin �
for � � T

MA��,T� =
− P0EI� sin �T sin ��1 − ��

l2�2 sin �
for � � T

and

Q��,T� = QA��,T� +
GA�2

l� 	
n=1

	 � rn
2

n

An sin rnT

+
sn

2

n

Bn sin snTcos n
� �31�

where

QA��,T� = P� sin ��1 − T�cos ��

�1 − �2�sin �
−

1

�2�1

2
− T� for �  T

QA��,T� = − P� sin �T cos ��1 − ��
�1 − �2�sin �

+
1

�2�1

2
− T� for � � T

3 Euler-Bernoulli Beam
Let us consider, for comparison, the vibration of the Euler-

Bernoulli beam under a force moving with a constant velocity.
The governing equation in terms of dimensionless variables �5�
has the form

wIV��,T� + �0
2ẅ��,T� =

Pl3

EI
��� − T� �32�

where �0
2=�Av2l2 /EI

For a finite, simply supported beam, the solution has the form

w��,T� = wA��,T� + wS��,T�

=
Pl3

EI �	
n=1

	
sin n
T sin n
�

�n
�2��n
�2 − �0
2�

− �0	
n=1

	
sin��n
�2/�0�T sin n
�

�n
�3��n
�2 − �0
2� � �33�

The first series in Eq. �33� represents an aperiodic vibration and
has slower convergent than the second series, which represents the
free vibration. The function wA�� ,T� satisfies also the ordinary
equation

wA
IV��,T� + �0

2wA
II��,T� =

Pl3

EI
��� − T� �34�

After solving Eq. �34� using, for example, Laplace transform, the
function wA�� ,T� can be obtained in the closed form

wA��,T� =
Pl3

EI
� sin �0�1 − T�sin �0�

�0
3 sin �0

−
�1 − T��

�0
2 � for � � T

�35�

Journal of Applied Mechanics MARCH 2008, Vol. 75 / 024503-3

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



wA��,T� =
Pl3

EI
� sin �0T sin �0�1 − ��

�0
3 sin �0

−
T�1 − ��

�0
2 � for � � T

The solution �35� was obtained for the first time by Kączkowski
�16� using the method of “superposed deflection.”

The bending moment and shear force for the Euler-Bernoulli
beam are equal to

M��,T� = MA��,T� − 2Pl�0	
n=1

	
sin��n
�2/�0�T sin n
�

�n
���n
�2 − �0
2�

�36�

where

MA��,T� = Pl
sin �0�1 − T�sin �0�

�0 sin �0
for � � T

MA��,T� = Pl
sin �0T sin �0�1 − ��

�0 sin �0
for � � T

and

Q��,T� = QA��,T� − 2P�0	
n=1

	
sin��n
�2/�0�T cos n
�

�n
�2 − �0
2 �37�

where

QA��,T� = P
sin �0�1 − T�cos �0�

sin �0
for �  T

QA��,T� = − P
sin �0T cos �0�1 − ��

sin �0
for � � T

From Eqs. �31� and �37�, it follows that the jump in the shear
force Q at the point of the moving force ��=T� is equal to P / �1
−�2� in Timoshenko beam and P in the Euler-Bernoulli beam.
When � tends to 1 �v→vs�, the shear force in the Timoshenko
beam tends to infinity.

4 Conclusion
The dynamic response of a finite, simply supported Timosh-

enko beam loaded by a force moving with a constant velocity has
been considered. The classical solution for transverse displace-
ment and the rotation of cross section has a form of a sum of two
infinite series. It has been shown that one of the series �the one
which represent aperiodic vibrations of the beam� can be pre-

sented in closed forms. The closed form solutions take different
forms depending if the velocity v of the moving force is smaller
or larger than the velocities of certain shear and bending waves.
This follows from the fact that for Timoshenko beam �contrary to
Euler-Bernoulli beam�, shear phenomena can occur, which is seen
in the closed form solution. The presented closed form solutions
have an important meaning in the case when we consider the
bending moment or shear force in the beam, particularly in the
vicinity of the load point.
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The paper of McAdams et al. (ASME J. Appl. Mech. 74, pp. 191–
202) explored two different approaches for damage detection in
vibrating beams having both manufacturing variations in geom-
etry and crack damage. One of the approaches, however, has a
significant error in its formulation. The effects of this error on the
formulation and the analytical results are discussed.
�DOI: 10.1115/1.2775505�

In Ref. �1�, the authors pursued two approaches for damage
detection in the presence of geometric variations in cross section
due to manufacturing tolerances. They exploit the fact that both
the damage and the manufacturing tolerances produce spatial de-
pendence in the beam’s mass density and flexural rigidity, which
in turn influences the modal vibration properties of the beam,
specifically its natural frequencies. The consideration of such spa-
tial variations has recently attracted attention in the structural
health monitoring community, and other researchers �2,3� have
proposed related approaches for identifying damage based on this
concept, albeit without consideration of manufacturing tolerances.

One of the approaches used in Ref. �1� is a finite difference
scheme for approximating the governing equation for Euler–
Bernoulli beam vibration that allows for spatial variation of the
mass density and flexural stiffness. For free vibration, the relevant
equation is

�A�x�
�2w

�t2 +
�2

�x2�EI�x�
�2w

�x2 � = 0 �1�

where w=w�x , t� is the transverse vibration response and �A�x�
and EI�x� are the spatially dependent mass per unit length and
flexural rigidity. This equation can be expanded by performing the
indicated differentiation of the second term, resulting in

�A�x�
�2w

�t2 + EI��x�
�2w

�x2 + 2EI��x�
�3w

�x3 + EI�x�
�4w

�x4 = 0 �2�

where �·�� denotes an ordinary spatial derivative. However, Eq.
�2� in Ref. �1� neglects the term 2EI��x��3w /�x3 due to the incor-
rect use of a “multiplication rule” for second derivatives. As a
consequence, the authors’ finite difference approximations for the
free vibration equation �most importantly, Eqs. �14�, �17�, �26�,

and �27�� are incorrectly formulated, compromising the results of
the analytical study performed by the authors that employs these
equations.

A clear indication of the effect of this error can be seen in the
results obtained by the authors for the shifts in natural frequencies
induced by crack damage. They report in Ref. �1� that, while the
first, third, and fifth vibration modes had natural frequencies that
decreased �on average� in the presence of damage, the natural
frequencies of the second and fourth modes increased. In light of
the error made in the formulation of the finite difference equa-
tions, this issue can now be understood by considering the contri-
butions of the missing term in Eq. �2� to the overall dynamics.
Assuming that the perturbations of Eq. �2� arising from the geo-
metric variations and the crack damage are suitably small, the
mode shape Wn�x� corresponding to the nth mode of vibration
may be expressed as

Wn�x� = sin�n�x

L
� + Wn,pert�x� �3�

where Wn,pert�x� represents the �presumably small� perturbations
of the mode shape away from its “ideal” value in the absence of
spatial variations. Letting An�t� denote the corresponding time-
dependent amplitude of vibration for the nth mode, we can ob-
serve that the term missing from the authors’ formulation of the
governing equation makes the following approximate contribution
to the dynamics:

2EI��x�
�3w

�x3 	 − 2�n�

L
�3

A�t�EI��x�cos�n�x

L
� �4�

�The exact contribution to the dynamics depends on the behavior
of Wn,pert� �x�, which may or may not be negligible but is assumed
to be smaller in magnitude than −�n� /L�3 cos�n�x /L�.�

Now, in the authors’ example, the damage location is taken to
be x= 1

2L, the midpoint of the beam. Evaluating Eq. �4� at this
location, we obtain

2EI��x =
1

2
L� �3w

�x3 	 − 2�n�

L
�3

A�t�EI��x =
1

2
L�cos�n�

2
�

�5�

Note that, for the first, third, and fifth modes of vibration, the
right-hand side of Eq. �5� is zero, showing that the term missing
from the authors’ formulation of the dynamics makes very little
contribution to the overall dynamics for these modes. �Of course,
the term proportional to Wn,pert� �x� will make a nonzero contribu-
tion, but this should be relatively small.� Thus, it is not unex-
pected that the authors’ analysis should reproduce the anticipated
behavior of the natural frequencies for these modes, as their
choice of damage location effectively causes an important effect
of their error to “disappear.” �It is understood that this missing
term will make other important contributions to the overall dy-
namics of these modes at other locations; thus, the previous state-
ment should not be construed as saying the missing term makes
no important contributions.� However, when one considers Eq. �5�
for the second and fourth modes, it is apparent that the missing
term’s contribution to the overall dynamics of these modes will be
quite noticeable; in fact, the right-hand side of Eq. �5� has its
largest magnitude at the damage location. Hence, it is understand-
able that the natural frequencies of these modes do not shift ap-
propriately, as a significant source of perturbation has been ne-
glected.

It should be noted that the authors’ second approach to the
damage identification problem makes no use of Eq. �2�, so there is
no reason to believe that the results obtained via this approach
have this source of error. The authors, however, are encouraged to
revisit their finite difference analysis in light of the points raised
by this discussion.
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